PIESYS: A Patient Model-Based Intelligent System for Continuing Hypertension Management

  • Constantinos Koutsojannis
  • Ioannis Hatzilygeroudis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4924)

Abstract

Hypertension is estimated to be the third leading cause of death worldwide and its management is based on guidelines regarding diagnosis, evaluation, risk assessment, treatment and continuing care. This paper presents an intelligent decision support system, which operationalises algorithms for hypertension management using intelligent technologies. PIESYS encourages blood pressure control and recommends guideline-concordant choice of drug therapy in relation to co morbid diseases. Because evidence for best management of hypertension is mostly individualized, PIESYS is designed to help clinical experts to customize their therapeutic strategy with the use of the Patient Response Database (PRDB) incorporating initial or current data with patient responses or side effects, providing response-adaptive continual care. Together with PRDB, PIESYS uses an independent module, called Computerized Patient Model (CPM), reflecting patient’s current state, which affects therapy or care modifications for hypertension management. PIESYS introduces personalised (patient-centric) approach in health care systems in contrast to guideline-dependent classical ones.

Keywords

Hypertension management decision support patient model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Institute for Clinical Systems Improvement (ICSI). Hypertension diagnosis and treatment. Bloomington (MN): Institute for Clinical Systems Improvement (ICSI), p. 53 (2005)Google Scholar
  2. 2.
    Johnson, P.D., Tu, S., Booth, N., Sugden, B., Purves, I.: Using scenarios in chronic disease management guidelines for primary care. In: Proc. AMIA Symp., pp. 389–393 (2000)Google Scholar
  3. 3.
    Peleska, J., Svejda, D., Zvarova, J.: Computer supported decision making in therapy of arterial hypertension. Int. J. Med. Inform. 45(1-2), 25–29 (1997)CrossRefGoogle Scholar
  4. 4.
    Takahashi, E., Yoshida, K., Izuno, T., Miyakawa, M., Sugimori, H.: Protocol care for hypertension supported by an expert system. Medinfo. 8(2), 954 (1995)Google Scholar
  5. 5.
    van der Lei, J., van der Does, E., Man in ’t Veld, A.J., Musen, M.A., van Bemmel, J.H.: Response of general practitioners to computer-generated critiques of hypertension therapy. Methods. Inf. Med. 32(2), 146–153 (1993)Google Scholar
  6. 6.
    Blinowska, A., Chatellier, G., Bernier, J., Lavril, M.: Bayesian statistics as applied to hypertension diagnosis. IEEE Trans Biomed Eng 38(7), 699–706 (1991)CrossRefGoogle Scholar
  7. 7.
    Degoulet, P., Chatellier, G., Devries, C., Lavril, M., Menard, J.: Computer-assisted techniques for evaluation and treatment of hypertensive patients. Am. J. Hypertens 3(2), 156–163 (1990)Google Scholar
  8. 8.
    Devries, C., Degoulet, P., Jeunemaitre, X., Sauquet, D., Morice, V., Chatellier, G., Aime, F., Menard, J.: Integrating management and expertise in a computerised system for hypertensive patients. Nephrol Dial Transplant 2(5), 327–331 (1987)Google Scholar
  9. 9.
    Jeunemaitre, X., Degoulet, P., Morice, V., Chatellier, G., Devries, C., Plouin, P.F., Boisvieux, J.F., Menard, J.: Testing an expert system for hypertension. Arch. Mal. Coeur. Vaiss 79(6), 808–812 (1986)Google Scholar
  10. 10.
    Siepmann, J.P., Bachman, J.W.: HTN-APT: Computer aid in hypertension management. J. Fam. Pract 24(3), 313–316 (1987)Google Scholar
  11. 11.
    Seroussi, B., Bouaud, J., Chatellier, G.: Modeling patient-specific therapeutic strategy in the guideline-based management of a chronic disease. Stud Health Technol Inform 95, 537–542 (2003)Google Scholar
  12. 12.
    Montgomery, A., Fahey, T., Peters, T., MacIntosh, C., Sharp, D.: Evaluation of computer based clinical decision support system and risk chart for management of hypertension in primary care: Randomised controlled trial. BMJ 2000 320, 686–690Google Scholar
  13. 13.
    de Clercq, P.A.: Guideline-based Decision Support in Medicine Modelling Guidelines for the Development and Application of Clinical Decision Support Systems NUGI 981, Technische Universiteit Eindhoven (2003)Google Scholar
  14. 14.
    Negnevitsky, M.: Artificial Intelligence. A guide to Intelligent Systems. Addison Wesley, Reading (2002)Google Scholar
  15. 15.
    Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. The sixth report of the Joint National Committee on Prevention, Detection,Evaluation, and Treatment of High Blood Pressure. Arch. Intern. Med., 157 p. 2413–2446 (1997)Google Scholar
  16. 16.
    World Health Organisation - International Society of Hypertension guidelines for the management of hypertension. J. Hypertens 1999 17, 151–183 (1999)Google Scholar
  17. 17.
    Koutsojannis, C., Hatzilygeroudis, I.: Fuzzy-Evolutionary Synergism in an Intelligent Medical Diagnosis System. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 1313–1322. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Gamberger, D., Krstacic, G., Smuc, T.: Medical Expert Evaluation of Machine Learning Results for a Coronary Heart Disease Database. In: Brause, R., Hanisch, E. (eds.) ISMDA 2000. LNCS, vol. 1933, pp. 119–122. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Constantinos Koutsojannis
    • 1
  • Ioannis Hatzilygeroudis
    • 1
  1. 1.Department of Computer Engineering & InformaticsSchool of EngineeringRion(Greece)

Personalised recommendations