Hybrid-Mode Floating-Point FPGA CORDIC Co-processor

  • Jie Zhou
  • Yong Dou
  • Yuanwu Lei
  • Yazhuo Dong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4943)

Abstract

This paper presents a 32-bit floating-point CORDIC co- processor on FPGA, providing all known CORDIC functions. Firstly, we propose a hybrid-mode algorithm, combining hybrid rotation angle methods with argument reduction algorithm to reduce hardware area usage and meanwhile keep unlimited convergence domain for any floating-point inputs. And according to algorithm, the hybrid-mode CORDIC co-processor is organized into three phases, argument reduction, CORDIC calculation and normalization with 34 pipeline stages for FPGA implementation. The synthesis results show the clock frequency can reach 217MHz on Xilinx Virtex5 FPGA. Comparing to general-purpose microprocessor in three scientific program kernels, the CORDIC co-processor can guarantee at least 23-bit precision and achieve a maximum speedup of 47.6 times, 35.2 times in average.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andraks, R.: A survey of cordic algorithm for fpga based computers. In: Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, pp. 191–200 (1998)Google Scholar
  2. 2.
    Xiaobo, H., Ronald, G.H., Steven, C.B.: Expanding the range of convergence of the cordic algorithm. IEEE Transactions on Computers 40, 13–21 (1991)CrossRefGoogle Scholar
  3. 3.
    Maharatna, K., Troya, A., Banerjee, S., Grass, E.: Virtually scaling-free adaptive cordic rotator. Computers and Digital Techniques, IEE Proceedings 151, 448–456 (2004)CrossRefGoogle Scholar
  4. 4.
    Maharatna, K., Dhar, A.S., Banerjee, S.: A vlsi array architecture for realization of dft, dht, dct and dst. Signal Process 81, 1813–1822 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Ravichandran, S., Asari, V.: Implementation of unidirectional cordic algorithm using precomputed rotation bits. Circuits and Systems 3, 453–456 (2002)Google Scholar
  6. 6.
    Timmermann, D., Hahn, H., Hosticka, B.: Low latency time cordic algorithms. IEEE Trans. Computers 41, 1010–1015 (1992)CrossRefGoogle Scholar
  7. 7.
    Vadlamani, S., Mahmoud, D.W.: Comparison of CORDIC Algorithm Implementations on FPGA Families. System Theory [e]. Tennessee Technol, Univ. USA (2002)Google Scholar
  8. 8.
    Valls, J., hlmann, M., Parhi, K.: Efficient mapping of cordic algorithm on fpga. In: Signal Processing Systems, pp. 336–345 (2000)Google Scholar
  9. 9.
    Volder, J.E.: The cordic trigonometric computing technique. IRE Trans. Electron. Comput. 8, 330–334 (1959)CrossRefGoogle Scholar
  10. 10.
    Walther, J.S.: A unified algorithm for elementary functions. In: Proc. AFIPS Conf., vol. 38, pp. 389–395 (1971)Google Scholar
  11. 11.
    Hu, X., Bass, S.C., Harber, R.G.: An efficient implementation of singular value decomposition rotation transformations with cordic processor. J. Parallel Distrib. Comput. 17, 360–362 (1993)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jie Zhou
    • 1
  • Yong Dou
    • 1
  • Yuanwu Lei
    • 1
  • Yazhuo Dong
    • 1
  1. 1.Department of Computer ScienceNational University of Defense TechnologyChangshaP.R.China

Personalised recommendations