An Extended Beam-ACO Approach to the Time and Space Constrained Simple Assembly Line Balancing Problem

  • Christian Blum
  • Joaquín Bautista
  • Jordi Pereira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4972)

Abstract

Assembly line balancing problems are concerned with the distribution of work required to assemble a product in mass or series production among a set of work stations on an assembly line. The specific problem considered here is known as the time and space constrained simple assembly line balancing problem. Among several possible objectives we consider the one of minimizing the number of necessary work stations. This problem is denoted by TSALBP-1 in the literature. For tackling this problem we propose an extended version of our Beam-ACO approach published in [3]. Beam-ACO algorithms are hybrid techniques that result from combining ant colony optimization with beam search. The experimental results show that our algorithm is able to find 128 new best solutions in 269 possible cases.

Keywords

Work Station Problem Instance Assembly Line Partial Solution Priority Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bautista, J., Pereira, J.: Ant algorithms for assembly line balancing. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 65–75. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bautista, J., Pereira, J.: Ant algorithms for a time and space constrained assembly line balancing problem. European Journal of Operational Research (2007)Google Scholar
  3. 3.
    Blum, C., Bautista, J., Pereira, J.: Beam-ACO applied to assembly line balancing. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 96–107. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Trans. on Systems, Man, and Cybernetics – Part B 34(2), 1161–1172 (2004)CrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)MATHGoogle Scholar
  6. 6.
    Gonçalves, J.F., de Almeida, J.R.: A hybrid genetic algorithm for assembly line balancing. Journal of Heuristics 8, 629–642 (2002)CrossRefGoogle Scholar
  7. 7.
    Hoffmann, T.R.: EUREKA: A hybrid system for assembly line balancing. Management Science 38, 39–47 (1992)MATHGoogle Scholar
  8. 8.
    Johnson, R.V.: Optimally balancing large assembly lines with ”FABLE”. Management Science 34, 240–253 (1988)CrossRefGoogle Scholar
  9. 9.
    Lapierre, D.L., Ruiz, A., Soriano, P.: Balancing assembly lines with tabu search. European Journal of Operational Research 168, 826–837 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Merkle, D., Middendorf, M.: An ant algorithm with a new pheromone evaluation rule for total tardiness problems. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 287–296. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal of Production Research 26, 297–307 (1988)CrossRefGoogle Scholar
  12. 12.
    Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research 168(3), 666–693 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Scholl, A., Klein, R.: SALOME: A bidirectional branch and bound procedure for assembly line balancing. INFORMS Journal on Computing 9, 319–334 (1997)MATHGoogle Scholar
  14. 14.
    Scholl, A., Voss, S.: Simple assembly line balancing—Heuristic approaches. Journal of Heuristics 2, 217–244 (1996)CrossRefGoogle Scholar
  15. 15.
    Sprecher, A.: Dynamic search tree decomposition for balancing assembly lines by parallel search. International Journal of Production Research 41, 1423–1430 (2003)CrossRefGoogle Scholar
  16. 16.
    Talbot, F.B., Patterson, J.H., Gehrlein, J.H.: A comparative evaluation of heuristic line balancing techniques. Management Science 32, 430–454 (1986)Google Scholar
  17. 17.
    Vilarinho, P.M., Simaria, A.: A two-stage heuristic method for balancing mixed-model assembly lines with parallel workstations. International Journal of Production Research, 1405–1420 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christian Blum
    • 1
  • Joaquín Bautista
    • 2
  • Jordi Pereira
    • 3
  1. 1.ALBCOM, Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.ETSEIB, Nissan ChairUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.ETSEIB, Dept. d’Organitzacíó d’EmpresesUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations