Advertisement

Improving Metaheuristic Performance by Evolving a Variable Fitness Function

  • Keshav Dahal
  • Stephen Remde
  • Peter Cowling
  • Nic Colledge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4972)

Abstract

In this paper we study a complex real world workforce scheduling problem. We apply constructive search and variable neighbourhood search (VNS) metaheuristics and enhance these methods by using a variable fitness function. The variable fitness function (VFF) uses an evolutionary approach to evolve weights for each of the (multiple) objectives. The variable fitness function can potentially enhance any search based optimisation heuristic where multiple objectives can be defined through evolutionary changes in the search direction. We show that the VFF significantly improves performance of constructive and VNS approaches on training problems, and “learn” problem features which enhance the performance on unseen test problem instances.

Keywords

Variable Fitness Function Evolution Heuristic Meta-heuristic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Remde, S., Cowling, P., Dahal, K., Colledge, N.: Evolution of Fitness Functions to Improve Heuristic Performance. In: Proceedings of Learning and Intelligent Optimization (LION) II. LNCS, Springer, Heidelberg (to be published, 2008)Google Scholar
  2. 2.
    Tsang, E., Voudouris, C.: Fast local search and guided local search and their application to British Telecom’s workforce scheduling problem. Operations Research Letters 20(3), 119–127 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cowling, P., Colledge, N., Dahal, K., Remde, S.: The Trade Off between Diversity and Quality for Multi-objective Workforce Scheduling. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Remde, S., Cowling, P., Dahal, K., Colledge, N.: Exact/Heuristic Hybrids using rVNS and Hyperheuristics for Workforce Scheduling. In: Evolutionary Computation in Combinatorial Optimization Proc. LNCS, Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Hartmann, S.: Project Scheduling under Limited Resources: Model, methods and applications. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Vanlaarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K.: Job Shop Scheduling by Simulated Annealing. Operations Research 40(1), 113–125 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Toth, P., Vigo, D. (eds.): The Vehicle-Routing Problem. Siam, Philadelphia (2001)Google Scholar
  8. 8.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Chichester (1991)Google Scholar
  9. 9.
    Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Oper. Res. 130(3), 449–467 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Operational Research 24(11), 1097–1100 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Potgieter, G., Engelbrecht, A.P.: Genetic Algorithms for the Structure Optimisation of learned Polynomial Expressions. Applied Mathematics and Computation 186(2), 1441–1466 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Shimojika, K., Fukuda, T., Hasehawa, Y.: Self-Tuning Fuzzy Modeling with adaptive membership function, rules, and hierarchical structure-based on Genetic Algorithm. Fuzzy Sets And Systems 71(3), 295–309 (1995)CrossRefGoogle Scholar
  13. 13.
    Reeves, C.R.: Genetic Algorithms and Combinatorial Optimization. In: Rayward-Smith, V.J. (ed.) Applications of Modern Heuristic Methods, Alfred Waller, Henley-on-Thames, pp. 111–125 (1995)Google Scholar
  14. 14.
    Yao, X.: Evolving artificial neural networks. Proceedings Of The IEEE 87(9), 1423–1447 (1999)CrossRefGoogle Scholar
  15. 15.
    Valls, V., Ballestin, F., Quintanilla, S.: Justification and RCPSP: A technique that pays. European Journal of Operational Research 165(2) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Keshav Dahal
    • 1
  • Stephen Remde
    • 1
  • Peter Cowling
    • 1
  • Nic Colledge
    • 1
  1. 1.MOSAIC Research GroupUniversity of BradfordBradfordUnited Kingdom

Personalised recommendations