Advertisement

The User Preference Learning for Multi-agent Based on Neural Network in Ubiquitous Computing Environment

  • Eungyeong Kim
  • Hyogun Yoon
  • Malrey Lee
  • Thomas M. Gatton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4953)

Abstract

In order to provide users with intelligent services, ubiquitous computing needs to make user situation analysis in consideration of users’ movement. Thus, the present study proposed the multi-agent model for users to share context information and for user situation analysis and context learning using Bayesian Neural Network. The proposed user context structure of multi-agent distinguishes between dynamic and static contexts according to the volume of context change, and defines correlations among objects. Therefore, multi-agent can be aware of users’ situation.

Keywords

Ubiquitous computing Multi-agent Context awareness Mobile device 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiser, M.: Some Computer Science Problems in Ubiquitous Computing. Communications of the ACM, 75–84 (1993)Google Scholar
  2. 2.
    Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context Awareness. GVU Technical Report GIT-GVU -99-22. Submitted to the 1st International Symposium on Handheld and Ubiquitous Computing (HUC 1999) (1999)Google Scholar
  3. 3.
    Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context Awareness. In: Proceedings of the CHI 2000 Workshop on The What, Who, Where, When and How of Context Awareness (2000)Google Scholar
  4. 4.
    Yoon, H.J.: Researches and Trends of Ubiquitous Technology. Ubiu.net Report. 1 (2006)Google Scholar
  5. 5.
    Moran, T.P., Dourish, P.: Introduction to This Special Issue on Context-Aware Computing. Human-Computer Interaction (HCI) 16 (2001)Google Scholar
  6. 6.
    Salber, D., Dey, A.K., Abowd, G.D.: The Context Toolkit: Aiding the Development of Context-Aware Applications. In: The Workshop on Software Engineering for Wearable and Pervasive Computing, Limerick Ireland (2000)Google Scholar
  7. 7.
    Couder, P., Kermarrec, A.M.: Improving Level of Service of Mobile User Using Context Awareness. In: 18th IEEE Symposium on Reliable Distributed System, pp. 24–33 (1999)Google Scholar
  8. 8.
    Jang, S., Woo, W.: ubi-UCAM: A Unified Context- Aware Application Model. LNAI(Contex03), pp.178–189 (2003)Google Scholar
  9. 9.
    Schilit, B.N., Adams, N.I., Want, R.: Context-Aware Computing Applications. In: IEEE Workshop on Mobile Computing Systems and Applications, pp. 85–90 (1994)Google Scholar
  10. 10.
    Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing Journal 5(1), 4–7 (2001)CrossRefGoogle Scholar
  11. 11.
    Pascoe, J.: Adding generic contextual capabilities to wearable computers. In: Proceedings of 2nd International Symposium on Wearable Computers, pp. 92–99 (1998)Google Scholar
  12. 12.
    Kim, C.S., Kim, J.M., Bae, S.J., Woo, S.M., Kim, H.Y.: Infrastructure Construction and Management Technologies for Ubiquitous Computing Environment. Analysis of Information Communication Trends 19(5), 9–20 (2004)Google Scholar
  13. 13.
    Lim, C.S.: Ubiquitous: Technology or Service? In: Electronic Commerce Integration Forum (ECIF 2005) (2005)Google Scholar
  14. 14.
    Crowley, J.L., Coutaz, J., Rey, G., Reignier, P.: Perceptual Components for Context Aware Computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 117–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Dey, A.K.: Providing Architectural Support for Building Context-Aware Applications. Ph.D. Thesis, Department of Computer Science, Georgia Institute of Technology, Atlanta (2000)Google Scholar
  16. 16.
  17. 17.
    MIT the media Lab, http://www.media.mit.edu
  18. 18.
    Romn, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.: Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE Pervasive Computing 1, 74–83 (2003)CrossRefGoogle Scholar
  19. 19.
    Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project Aura: Towards Distraction-Free Pervasive Computing. IEEE Pervasive Computing 1(2), 22–31 (2002)CrossRefGoogle Scholar
  20. 20.
    Preuveneers, D., Bergh, J.V., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., Boscchere, K.D.: Towards an extensible context ontology for ambient intelligence. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 148–159. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Wennlund, A.: Context-aware Wearable Device for Reconfigurable Application Networks. Department of Microelectronics and Information Technology (IMIT2003) (2003)Google Scholar
  22. 22.
  23. 23.
    Rossi, F., Brieuc, C.-G.: Functional multi-layer perceptron: a non-linear tool for functional data analysis. Neural Networks 18, 40–60 (2005)CrossRefGoogle Scholar
  24. 24.
    Datta, A.: MobiGrid: Peer-to-Peer Overlay and Mobile Ad-Hoc Network Rendezvous - a Data Management Perspective. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 16–20. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eungyeong Kim
    • 1
  • Hyogun Yoon
    • 1
  • Malrey Lee
    • 1
  • Thomas M. Gatton
    • 2
  1. 1.School of Electronics & Information EngineeringChonBuk National UniversityJeonjuSouth Korea
  2. 2.School of Engineering and TechnologyNational UniversityLa JollaUSA

Personalised recommendations