Analyzing Knowledge Exchanges in Hybrid MAS GIS Decision Support Systems, Toward a New DSS Architecture

  • D. Urbani
  • M. Delhom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4953)


In this paper we present the strong points and the weakness of GIS used as decision support systems. We expose the advantages of adding MAS to GIS. We present the common critters used to characterize the MAS-GIS links, and introduce a new point of view about these relations studying the nature of the knowledge used to help decision makers. We explicit the nature and the purpose of these knowledge, and we study the knowledge exchanges between MAS, GIS, experts and decision makers. Then, we propose a new architecture, SMAG, for hybrid MAS-GIS decision support systems development platforms. We implement this architecture and build a decision support system dedicated to the fresh water problem. Thus we illustrate the relevance of our operational decision making solution that is of one the first to make possible to take into account together individual and social behaviors, spatial component and specificities of target sites.


multi-agent systems geographic information systems decision support systems knowledge management model water corsica 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shahriari, N., Tao, C.: GIS applications using agent technology. In: Proceedings of the Symposium on Geospatial Theory, Processing and Applications (ISPRS Commission IV), July 9-12, 2002, Ottawa, Canada (2002)Google Scholar
  2. 2.
    Gonçavels, A.S., Rodrigues, A., Correia, L.: Multi-Agent Simulation within Geographic Information Systems. In: Coelho, H., Espinasse, B. (eds.) Proceedings of 5th Workshop on Agent-Based Simulation (2004)Google Scholar
  3. 3.
    Axtell, R.: Why Agents? On the Varied Motivations for Agent Computing in the Social Sciences. In: Working Paper 17, Center on Social and Economic Dynamics, Brookings Institution (2000)Google Scholar
  4. 4.
    Wooldridge, M.: An introduction to multi-agent systems. John Wiley & Sons, Chichester (2001)Google Scholar
  5. 5.
    Sargent, R.G.: Verification and validation: some approaches and paradigms for verifying and validating simulation models. In: Proceedings of the 33rd conference on winter simulation, pp. 106–114. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  6. 6.
    Gimblett, R.: Integrating Geographic Information Systems and Agent-Based Modeling Techniques for Simulating Social and Ecological Processes. Oxford University Press, Oxford (2002)Google Scholar
  7. 7.
    Mandl, P.: Fuzzy-System-Umgebungen als regelgesteuerte Simulationsmaschinen für Geographische Informationssysteme (1996),
  8. 8.
    Koch, A.: Linking multi agent systems and GIS, modeling and simulating spatial interactions. In: 29th International Geographical Congress, Seoul, South Korea (2000)Google Scholar
  9. 9.
    Westervelt, D.: Geographic Information Systems and Agent-Based Modeling. In: Gimblett, H.R. (ed.) Integrating Geographic Information Systems and Agent-Based Modeling Techniques, Oxford University Press, New York (2002)Google Scholar
  10. 10.
    Heijst, G., Schreiber, A., Wielinga, B.: Using Explicit Ontologies in KBS Development. International Journal of Human-Computer Studies/Knowledge Acquisition (Fall, 1996)Google Scholar
  11. 11.
    Urbani, D.: Development of a new MAS GIS hybrid approach for Decision Support Systems; application to water management, Ph. D. These, University of Corsica (2006)Google Scholar
  12. 12.
    Oussalah, C.: Modèles Hiérarchisés Multi Vues pour le Support de Raisonnement dans les Domaines Techniques, Rapport technique, Université d’Aix-Marseille (1988)Google Scholar
  13. 13.
    Bousquet, F., Bakam, I., Proton, H., Le Page, C.: Cormas: common-pool resources and multi-agent Systems. In: Mira, J., Moonis, A., de Pobil, A.P. (eds.) IEA/AIE 1998. LNCS, vol. 1416, pp. 826–838. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    CIRAD, French agricultural research centre working for international development, description
  15. 15.
    ArcGIS description,
  16. 16.
    Urbani, D., Delhom, M.: Water Management Using a New Hybrid Multi-Agents System – Geographic Information System Decision Support System Framework. In: IEEE International Symposium on Environment Identities and Mediterranean area (July 2006)Google Scholar
  17. 17.
    Urbani, D., Delhom, M.: Water Management Policy Selection Using a Decision Support System Based on a Multi-agent System. In: Proceedings 9th Congress of the Italian, Association for Artificial Intelligence, Milan, Italy, September 21-23 (2005), Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • D. Urbani
    • 1
  • M. Delhom
    • 1
  1. 1.SPE LAB UMR CNRS 6134University of CorsicaQuartier Grossetti, CortéFrance

Personalised recommendations