Computational Intelligence in Electrophysiology: Trends and Open Problems

  • Cengiz Günay
  • Tomasz G. Smolinski
  • William W. Lytton
  • Thomas M. Morse
  • Padraig Gleeson
  • Sharon Crook
  • Volker Steuber
  • Angus Silver
  • Horatiu Voicu
  • Peter Andrews
  • Hemant Bokil
  • Hiren Maniar
  • Catherine Loader
  • Samar Mehta
  • David Kleinfeld
  • David Thomson
  • Partha P. Mitra
  • Gloster Aaron
  • Jean-Marc Fellous

Summary

This chapter constitutes mini-proceedings of the Workshop on Physiology Databases and Analysis Software that was a part of the Annual Computational Neuroscience Meeting CNS*2007 that took place in July 2007 in Toronto, Canada (http ://www.cnsorg.org). The main aim of the workshop was to bring together researchers interested in developing and using automated analysis tools and database systems for electrophysiological data. Selected discussed topics, including the review of some current and potential applications of Computational Intelligence (CI) in electrophysiology, database and electrophysiological data exchange platforms, languages, and formats, as well as exemplary analysis problems, are presented in this chapter. The authors hope that the chapter will be useful not only to those already involved in the field of electrophysiology, but also to CI researchers, whose interest will be sparked by its contents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeles M, Gat I (2001) Detecting precise firing sequences in experimental data. J Neurosci Methods 107:141-54CrossRefGoogle Scholar
  2. 2.
    Aertsen AM, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of "effective connectivity". J Neurophysiol 61:900-17Google Scholar
  3. 3.
    Baker S, Baseler H, Klein S, Carney T (2006) Localizing sites of activation in primary visual cortex using visual-evoked potentials and functional magnetic resonance imaging. J Clinical Neurophys. 23(5):404-15CrossRefGoogle Scholar
  4. 4.
    Barbieri R, Frank LM, Nguyen DP, Quirk MC, Solo V, Wilson MA, Brown E (2004) A Bayesian decoding algorithm for analysis of information encoding in neural ensembles. Conf Proc IEEE Eng Med Biol Soc 6:4483-86Google Scholar
  5. 5.
    Berners-Lee T, Hall W, Hendler J, Shadbolt N, Weitzner DJ (2006) Creating a Science of the Web. Science 313(5788):769-71CrossRefGoogle Scholar
  6. 6.
    Bhalla US and Bower JM (1993) Exploring parameter space in detailed single neuron models: Simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948-65Google Scholar
  7. 7.
    Bloom F, et al. (2003) Neuroscience Database Gateway. Available: http://ndg.sfn.org
  8. 8.
    Bokil H, Pesaran B, Andersen RA, Mitra PP (2006) A method for detection and classification of events in neural activity. IEEE Transactions on Biomedical Engineering 53:1678-87CrossRefGoogle Scholar
  9. 9.
    Bokil H, Purpura K, Schofflen J-M, Thompson D, Pesaran B, Mitra PP (2006) Comparing spectra and coherences for groups of unequal size. J Neurosci Methods 159:337-45CrossRefGoogle Scholar
  10. 10.
    Bokil H, Tchernichovski O, Mitra PP (2006) Dynamic phenotypes: Time series analysis techniques for characterising neuronal and behavioral dynamics. Neuroinformatics Special Issue on Genotype-Phenotype Imaging in Neuroscience 4:119-28Google Scholar
  11. 11.
    Bower JM and Beeman D (1997) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. SpringerGoogle Scholar
  12. 12.
    Brillinger DR (1992) Nerve cell spike train data analysis: A progression of technique. Journal of the American Statistical Association 87:260-71CrossRefGoogle Scholar
  13. 13.
    Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci 18:7411-25Google Scholar
  14. 14.
    Brown EN, Kass RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7:456-61CrossRefGoogle Scholar
  15. 15.
    Buracas GT, Zador AM, DeWeese MR, Albright TD (1998) Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20:959-69CrossRefGoogle Scholar
  16. 16.
    Cannon RC and D'Alessandro G (2006) The ion channel inverse problem: neuroinformatics meets biophysics. PLoS Comput Biol 2(8):e91CrossRefGoogle Scholar
  17. 17.
    Carmena JM, Lebedev MA, Henriquez CS, Nicolelis MAL (2005) Stable ensemble performance with single-neuron variability during reaching movements in primates. J Neurosci 25(46):10712-16CrossRefGoogle Scholar
  18. 18.
    Chance FS, Nelson SB, Abbott LF (1998) Synaptic Depression and the Temporal Response Characteristics of V1 Cells. J Neurosci 18:4785-99Google Scholar
  19. 19.
    Chapin JK, Nicolelis MA (1999) Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations. J Neurosci Methods 94:121-40CrossRefGoogle Scholar
  20. 20.
    Clancy CE and Rudy Y (2002) Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 105:1208-13CrossRefGoogle Scholar
  21. 21.
    Clancy CE and Kass RS (2004) Theoretical investigation of the neuronal Na+ channel SCN1A: abnormal gating and epilepsy. Biophys J 86:2606-14CrossRefGoogle Scholar
  22. 22.
    Crook S, Gleeson P, Howell F, Svitak J, Silver RA (2007) MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinf. 5(2):96-104CrossRefGoogle Scholar
  23. 23.
    Crowe DA, Averbeck BB, Chafee MV, Georgopoulos AP (2005) Dynamics of parietal neural activity during spatial cognitive processing. Neuron 47:885-91CrossRefGoogle Scholar
  24. 24.
    Czanner G, Grun S, Iyengar S (2005) Theory of the snowake plot and its relations to higher-order analysis methods. Neural Comput 17:1456-79MATHCrossRefGoogle Scholar
  25. 25.
    Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol 72:803-18Google Scholar
  26. 26.
    Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13-24CrossRefGoogle Scholar
  27. 27.
    Fee MS, Mitra PP, Kleinfeld D (1996) Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J Neurosci Methods 69:175-88CrossRefGoogle Scholar
  28. 28.
    Fellous J-M, Rudolph M, Destexhe A, Sejnowski TJ (2003) Variance detection and gain modulation in an in-vitro model of in-vivo activity. Neuroscience 122:811-29CrossRefGoogle Scholar
  29. 29.
    Fellous JM, Tiesinga PH, Thomas PJ, Sejnowski TJ (2004) Discovering spike patterns in neuronal responses. J Neurosci 24:2989-3001CrossRefGoogle Scholar
  30. 30.
    Gardner D, Abato M, Knuth KH, DeBellis R, Erde SM (2001) Dynamic publication model for neurophysiology databases. Philos Trans R Soc Lond B Biol Sci 356(1412):1229-47CrossRefGoogle Scholar
  31. 31.
    Gardner D, Knuth KH, Abato M, Erde SM, White T, DeBellis R, Gardner EP (2001) Common data model for neuroscience data and data model exchange. J Am Med Inform Assoc 8:17-33Google Scholar
  32. 32.
    Gardner D (2004) Neurodatabase.org: networking the microelectrode. Nat Neurosci 7(5):486-87CrossRefGoogle Scholar
  33. 33.
    Gardner D (2004) personal communicationGoogle Scholar
  34. 34.
    Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54(2):219-35CrossRefGoogle Scholar
  35. 35.
    Goddard NH, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D (2001) Towards NeuroML: model description methods for collaborative modelling in neuroscience. Philos Trans R Soc Lond B Biol Sci 356(1412):1209-1228CrossRefGoogle Scholar
  36. 36.
    Goddard NH, Cannon RC, Howell FW (2003) Axiope tools for data management and data sharing. Neuroinformatics 1(3):271-84CrossRefGoogle Scholar
  37. 37.
    Golomb D, Amitai Y (1997) Propagating neuronal discharges in neocortical slices: computational and experimental study. J Neurophysiol 78:1199-211Google Scholar
  38. 38.
    Golowasch J, Abbott LF, Marder E (1999) Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J Neurosci 19(20):RC33Google Scholar
  39. 39.
    Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87(2):1129-31Google Scholar
  40. 40.
    Gonzalez-Heydrich J, Steingard RJ, Putnam F, Beardslee W, Kohane IS (1999) Using `off the shelf' computer programs to mine additional insights from published data: diurnal variation in potency of ACTH stimulation of cortisol secretion revealed. Comput Methods Programs Biomed 58(3):227-38CrossRefGoogle Scholar
  41. 41.
    Greenstein JL, Wu R, Po S, Tomaselli GF, Winslow RL (2000) Role of the calcium-independent transient outward current I(to1) in shaping action potential morphology and duration. Circ Res 87:1026-1033Google Scholar
  42. 42.
    Grun S, Diesmann M, Aertsen A (2002) Unitary events in multiple singleneuron spiking activity: I. Detection and significance. Neural Comput 14:43-80CrossRefGoogle Scholar
  43. 43.
    Grun S, Diesmann M, Aertsen A (2002) Unitary events in multiple singleneuron spiking activity: II. Nonstationary data. Neural Comput 14:81-119CrossRefGoogle Scholar
  44. 44.
    Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsaki G (2003) Organization of cell assemblies in the hippocampus. Nature 424:552-6CrossRefGoogle Scholar
  45. 45.
    Herzog RI, Cummins TR, Waxman SG (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86(3):1351-64Google Scholar
  46. 46.
    Hines ML and Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179-209CrossRefGoogle Scholar
  47. 47.
    Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A database to support computational neuroscience. J Comput Neurosci 17(1):7-11CrossRefGoogle Scholar
  48. 48.
    Hodgkin AL and Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol Lond 117:500-544Google Scholar
  49. 49.
    Hulata E, Segev R, Ben-Jacob E (2002) A method for spike sorting and detection based on wavelet packets and Shannon's mutual information. J Neurosci Methods 117(1):1-12CrossRefGoogle Scholar
  50. 50.
    Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26(50):12921-42CrossRefGoogle Scholar
  51. 51.
    Huyser K and van der Laan J (1992) Data Thief v.1.0.8. Available:http://www.datathief.org/
  52. 52.
    Iglesias J, Villa AE (2007) Effect of stimulus-driven pruning on the detection of spatiotemporal patterns of activity in large neural networks. Biosystems 89:287-93CrossRefGoogle Scholar
  53. 53.
    Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304(5670):559-64CrossRefGoogle Scholar
  54. 54.
    Jackson JC, Johnson A, Redish AD (2006) Hippocampal sharp waves and reactivation during awake states depend on repeated sequential experience. J Neurosci 26:12415-26CrossRefGoogle Scholar
  55. 55.
    Kennedy DN and Haselgrove C (2006) The internet analysis tools registry: a public resource for image analysis. Neuroinformatics 4(3):263-70CrossRefGoogle Scholar
  56. 56.
    Kuzmick V, Lafferty J, Serfass A, Szperka D, Zale B, Nagvajara P, Johnson J, Moxon K (2001) Novel epileptic seizure detection system using multiple single neuron recordings. Conf Proc IEEE 27th Ann Northeast Bioeng, pp. 7–8Google Scholar
  57. 57.
    Laubach M, Shuler M, Nicolelis MA (1999) Independent component analyses for quantifying neuronal ensemble interactions. J Neurosci Methods 94:141-54CrossRefGoogle Scholar
  58. 58.
    Leblois A, Boraud T, Meissner W, Bergman H, Hansel D (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26(13):3567-83CrossRefGoogle Scholar
  59. 59.
    Lipa P, Tatsuno M, Amari S, McNaughton BL, Fellous JM (2006) A novel analysis framework for characterizing ensemble spike patterns using spike train clustering and information geometry. Society for Neuroscience Annual Meeting. Atlanta, GA, pp. 371-76Google Scholar
  60. 60.
    Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proceedings of the National Academy Of Sciences of The United States of America 96:15222-27CrossRefGoogle Scholar
  61. 61.
    Loader C (1999) Local Regression and Likelihood. Springer 62. LyttonWW(2006) Neural query system - data-mining from within the neuron simulator. Neuroinformatics 4(2):163-75MathSciNetGoogle Scholar
  62. 63.
    MacLean JN, Watson BO, Aaron GB, Yuste R (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48:811-23CrossRefGoogle Scholar
  63. 64.
    Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18(19):7613-7624Google Scholar
  64. 65.
    Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503-6CrossRefGoogle Scholar
  65. 66.
    Mamlouk AM, Sharp H, Menne KML, Hofmann UG, Martinetz T (2005) Unsupervised spike sorting with ICA and its evaluation using GENESIS simulations. Neurocomputing, 65-66:275-82CrossRefGoogle Scholar
  66. 67.
    Markram H (2006) The blue brain project. Nat Rev Neurosci 7(2):153-160CrossRefMathSciNetGoogle Scholar
  67. 68.
    Martignon L, Deco G, Laskey K, Diamond M, Freiwald W, Vaadia E (2000) Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. Neural Comput 12:2621-53CrossRefGoogle Scholar
  68. 69.
    Migliore M and Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nat Rev Neurosci 3(5):362-70CrossRefGoogle Scholar
  69. 70.
    Migliore M and Shepherd GM (2005) Opinion: an integrated approach to classifying neuronal phenotypes. Nat Rev Neurosci 6(10):810-18CrossRefGoogle Scholar
  70. 71.
    Mitra PP and Pesaran B (1999) Analysis of dynamic brain imaging data. Biophysical J 76:691-708CrossRefGoogle Scholar
  71. 72.
    Mokeichev A, Okun M, Barak O, Katz Y, Ben-Shahar O, Lampl I (2007) Stochastic emergence of repeating cortical motifs in spontaneous membrane potential uctuations in vivo. Neuron 53:413-25CrossRefGoogle Scholar
  72. 73.
    Nadasdy Z, Hirase H, Czurko A, Csicsvari J, Buzsaki G (1999) Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19:9497-507Google Scholar
  73. 74.
    Nirenberg S, Carcieri SM, Jacobs AL, Latham PE (2001) Retinal ganglion cells act largely as independent encoders. Nature 411:698-701CrossRefGoogle Scholar
  74. 75.
    Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo. J Neurophysiol 79:1450-60Google Scholar
  75. 76.
    Percival DB, Walden AT (2000) Wavelet Methods for Time Series Analysis. Cambridge University PressGoogle Scholar
  76. 77.
    Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neuroscience 5:805-11CrossRefGoogle Scholar
  77. 78.
    Pittendrigh S and Jacobs G (2003) NeuroSys: a semistructured laboratory database. Neuroinformatics 1(2):167-76CrossRefGoogle Scholar
  78. 79.
    Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998-4015CrossRefGoogle Scholar
  79. 80.
    Qi W and Crook S (2004) Tools for neuroinformatic data exchange: An XML application for neuronal morphology data. Neurocomp 58-60C:1091-5CrossRefGoogle Scholar
  80. 81.
    Rall W (1977) Core Conductor theory and cable properties of neurons. Handbook of Physiology, Sec. 1, The Nervous System, vol. 1, Bethesda, MD: Am Physiol Soc, pp. 39-97Google Scholar
  81. 82.
    Reinagel P, Reid RC (2002) Precise firing events are conserved across neurons. J Neurosci 22:6837-41Google Scholar
  82. 83.
    Reuveni I, Friedman A, Amitai Y, Gutnick MJ (1993) Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J Neurosci 13:4609-21Google Scholar
  83. 84.
    Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: Exploring the Neural Code. The MIT PressGoogle Scholar
  84. 85.
    Roth A and Hausser M (2001) Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. J Physiol 535:445-72CrossRefGoogle Scholar
  85. 86.
    Rudy Y, Silva JR (2006) Computational biology in the study of cardiac ion channels and cell electrophysiology. Quart Rev Biophysics 39(1):57-116CrossRefGoogle Scholar
  86. 87.
    Rutishauser U, Schuman EM, Mamelak AN (2006) Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo. J Neurosci Methods 154(1-2):204-24CrossRefGoogle Scholar
  87. 88.
    Sakmann B and Neher E (1995) Single-Channel Recording (2nd ed). Plenum PressGoogle Scholar
  88. 89.
    Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53CrossRefGoogle Scholar
  89. 90.
    Santhanam G, Sahani M, Ryu S, Shenoy K (2004) An extensible infrastructure for fully automated spike sorting during online experiments. Conf Proc IEEE Eng Med Biol Soc, pp. 4380–4Google Scholar
  90. 91.
    Schaefer AT, Helmstaedter M, Sakmann B, Korngreen A (2003) Correction of conductance measurements in non-space-clamped structures: 1. Voltage-gated k(+) channels. Biophys J 84:3508-28Google Scholar
  91. 92.
    Schaefer AT, Helmstaedter M, Schmitt AC, Bar-Yehuda D, Almog M, Ben-Porat H, Sakmann B, et-al (2007) Dendritic voltage-gated K+ conductance gradient in pyramidal neurones of neocortical layer 5B from rats. J Physiol 579:737-52CrossRefGoogle Scholar
  92. 93.
    Schreiber S, Fellous J-M, Tiesinga PH, Sejnowski TJ (2003) A new correlationbased measure of spike timing reliability. Neurocomputing 52-54:925-31Google Scholar
  93. 94.
    Surkis A, Peskin CS, Tranchina D, Leonard CS (1998) Recovery of cable properties through active and passive modeling of subthreshold membrane responses from laterodorsal tegmental neurons. J Neurophysiol 80(5):2593-607Google Scholar
  94. 95.
    Suzuki N, Takahata M, Sato K (2002) Oscillatory current responses of olfactory receptor neurons to odorants and computer simulation based on a cyclic AMP transduction model. Chem Senses 27:789-801CrossRefGoogle Scholar
  95. 96.
    Taylor AL, Hickey TJ, Prinz AA, Marder E (2006) Structure and visualization of high-dimensional conductance spaces. J Neurophysiol 96:891-905CrossRefGoogle Scholar
  96. 97.
    Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22(7):2963-76Google Scholar
  97. 98.
    Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP (2000) A procedure for an automated measurement of song similarity. Animal Behaviour 59:1167-76CrossRefGoogle Scholar
  98. 99.
    Thomson DJ, Chave AD (1991) Jacknifed error estimates for spectra, coherences, and transfer functions. In: Advances in spectrum analysis and array processing (Haykin S, ed), pp. 58-113. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  99. 100.
    Tóth TI and Crunelli V (2001) Estimation of the activation and kinetic properties of INa and IK from the time course of the action potential. J Neurosci Meth 111(2):111-26CrossRefGoogle Scholar
  100. 101.
    Traub RD, Contreras D, Cunningham MO, Murray H, Lebeau FE, Roopun A, Bibbig A, et-al. (2005) A single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts. J Neurophysiol 93(4):2194-232CrossRefGoogle Scholar
  101. 102.
    Vanier MC and Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7(2):149-71CrossRefGoogle Scholar
  102. 103.
    Venkataramanan L and Sigworth FJ (2002) Applying Hidden Markov Models to the Analysis of Single Ion Channel Activity. Biophys J 82:1930-42CrossRefGoogle Scholar
  103. 104.
    Weaver CM and Wearne SL (2006) The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing 69:1053-57CrossRefGoogle Scholar
  104. 105.
    Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733-36CrossRefGoogle Scholar
  105. 106.
    Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ (1998) Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J Neurophysiol 79:1017-44Google Scholar
  106. 107.
    Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140-43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Cengiz Günay
    • 1
  • Tomasz G. Smolinski
    • 1
  • William W. Lytton
    • 2
  • Thomas M. Morse
    • 3
  • Padraig Gleeson
    • 4
  • Sharon Crook
    • 5
  • Volker Steuber
    • 4
    • 6
  • Angus Silver
    • 4
  • Horatiu Voicu
    • 7
  • Peter Andrews
    • 8
  • Hemant Bokil
    • 8
  • Hiren Maniar
    • 8
  • Catherine Loader
    • 9
  • Samar Mehta
    • 10
  • David Kleinfeld
    • 11
  • David Thomson
    • 12
  • Partha P. Mitra
    • 8
  • Gloster Aaron
    • 13
  • Jean-Marc Fellous
    • 14
  1. 1.Dept. of BiologyEmory UniversityAtlantaUSA
  2. 2.Depts of Physiology /Pharmacology and NeurologyState University of New York - DownstateBrooklynUSA
  3. 3.Dept. of NeurobiologyYale UniversityNew HavenUSA
  4. 4.Dept. of PhysiologyUniversity College LondonLondonUK
  5. 5.Dept. of Mathematics and StatisticsArizona State UniversityTempeUSA
  6. 6.School of Computer ScienceUniversity of HertfordshireHatfieldUK
  7. 7.Dept. of Neurobiology and AnatomyUniversity of Texas Health Science CenterHoustonUSA
  8. 8.Cold Spring Harbor LaboratoryCold Spring HarborUSA
  9. 9.Dept. of StatisticsUniversity of AucklandAucklandNew Zealand
  10. 10.School of MedicineState University of New York - DownstateBrooklynUSA
  11. 11.Dept. of PhysicsUniversity of California, San DiegoLa JollaUSA
  12. 12.Dept. of Mathematics and StatisticsQueen’s UniversityKingstonCanada
  13. 13.Dept. of BiologyWesleyan UniversityMiddletownUSA
  14. 14.Dept. of PsychologyUniversity of ArizonaTucsonUSA

Personalised recommendations