Advertisement

A Linear Lower Bound on the Communication Complexity of Single-Server Private Information Retrieval

  • Iftach Haitner
  • Jonathan J. Hoch
  • Gil Segev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4948)

Abstract

We study the communication complexity of single-server Private Information Retrieval (PIR) protocols that are based on fundamental cryptographic primitives in a black-box manner. In this setting, we establish a tight lower bound on the number of bits communicated by the server in any polynomially-preserving construction that relies on trapdoor permutations. More specifically, our main result states that in such constructions Ω(n) bits must be communicated by the server, where n is the size of the server’s database, and this improves the Ω(n / logn) lower bound due to Haitner, Hoch, Reingold and Segev (FOCS ’07). Therefore, in the setting under consideration, the naive solution in which the user downloads the entire database turns out to be optimal up to constant multiplicative factors. We note that the lower bound we establish holds for the most generic form of trapdoor permutations, including in particular enhanced trapdoor permutations.

Technically speaking, this paper consists of two main contributions from which our lower bound is obtained. First, we derive a tight lower bound on the number of bits communicated by the sender during the commit stage of any black-box construction of a statistically-hiding bit-commitment scheme from a family of trapdoor permutations. This lower bound asymptotically matches the upper bound provided by the scheme of Naor, Ostrovsky, Venkatesan and Yung (CRYPTO ’92). Second, we improve the efficiency of the reduction of statistically-hiding commitment schemes to low-communication single-server PIR, due to Beimel, Ishai, Kushilevitz and Malkin (STOC ’99). In particular, we present a reduction that essentially preserves the communication complexity of the underlying single-server PIR protocol.

Keywords

Communication Complexity Security Parameter Commitment Scheme Oblivious Transfer Communication Round 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beimel, A., Ishai, Y., Kushilevitz, E., Malkin, T.: One-way functions are essential for single-server private information retrieval. In: 31st STOC, pp. 89–98 (1999)Google Scholar
  2. 2.
    Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Chang, Y.: Single database private information retrieval with logarithmic communication. In: 9th ACISP, pp. 50–61 (2004)Google Scholar
  4. 4.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: 36th FOCS, pp. 41–50 (1995)Google Scholar
  5. 5.
    Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private information retrieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 122–138. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Dziembowski, S., Maurer, U.M.: On generating the initial key in the bounded-storage model. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 126–137. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Fischlin, M.: On the impossibility of constructing non-interactive statistically-secret protocols from any trapdoor one-way function. In: CT-RSA, pp. 79–95 (2002)Google Scholar
  8. 8.
    Gennaro, R., Gertner, Y., Katz, J.: Lower bounds on the efficiency of encryption and digital signature schemes. In: 35th STOC, pp. 417–425 (2003)Google Scholar
  9. 9.
    Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gennaro, R., Lindell, Y., Malkin, T.: Enhanced versus plain trapdoor permutations for non-interactive zero-knowledge and oblivious transfer. Manuscript (2006)Google Scholar
  11. 11.
    Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic constructions. In: 41st FOCS, pp. 305–313 (2000)Google Scholar
  12. 12.
    Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant communication rate. In: 32nd ICALP, pp. 803–815 (2005)Google Scholar
  13. 13.
    Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: 41st FOCS, pp. 325–335 (2000)Google Scholar
  14. 14.
    Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor functions on trapdoor predicates. In: 42nd FOCS, pp. 126–135 (2001)Google Scholar
  15. 15.
    Goldreich, O.: Foundations of Cryptography, Basic Tools, vol. 1. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  16. 16.
    Goldreich, O.: Foundations of Cryptography, Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)Google Scholar
  17. 17.
    Haitner, I.: Implementing oblivious transfer using collection of dense trapdoor permutations. In: 1st TCC, pp. 394–409 (2004)Google Scholar
  18. 18.
    Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive protocols – A tight lower bound on the round complexity of statistically-hiding commitments. In: 48th FOCS, pp. 669–679 (2007)Google Scholar
  19. 19.
    Haitner, I., Hoch, J.J., Segev, G.: A linear lower bound on the communication complexity of single-server private information retrieval. Cryptology ePrint Archive, Report 2007/351 (2007)Google Scholar
  20. 20.
    Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. In: 47th FOCS, pp. 719–728 (2006)Google Scholar
  21. 21.
    Horvitz, O., Katz, J.: Bounds on the efficiency of “black-box” commitment schemes. In: 32nd ICALP, pp. 128–139 (2005)Google Scholar
  22. 22.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st STOC, pp. 44–61 (1989)Google Scholar
  23. 23.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Sufficient conditions for collision-resistant hashing. In: 2nd TCC, pp. 445–456 (2005)Google Scholar
  24. 24.
    Kalai, Y.T., Raz, R.: Succinct non-interactive zero-knowledge proofs with preprocessing for LOGSNP. In: 47th FOCS, pp. 355–366 (2006)Google Scholar
  25. 25.
    Kim, J.H., Simon, D.R., Tetali, P.: Limits on the efficiency of one-way permutation-based hash functions. In: 40th FOCS, pp. 535–542 (1999)Google Scholar
  26. 26.
    Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database, computationally-private information retrieval. In: 38th FOCS, pp. 364–373 (1997)Google Scholar
  27. 27.
    Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are sufficient for non-trivial single-server private information retrieval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 104–121. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  28. 28.
    Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: 8th ISC, pp. 314–328 (2005)Google Scholar
  29. 29.
    Lu, C.-J.: Encryption against storage-bounded adversaries from on-line strong extractors. J. Cryptology 17(1), 27–42 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton University Press, Princeton (1996)zbMATHGoogle Scholar
  31. 31.
    Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge arguments for NP using any one-way permutation. J. Cryptology 11(2), 87–108 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Nguyen, M.-H., Ong, S.J., Vadhan, S.P.: Statistical zero-knowledge arguments for NP from any one-way function. In: 47th FOCS, pp. 3–14 (2006)Google Scholar
  33. 33.
    Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System Sciences 52(1), 43–52 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Ostrovsky, R., Skeith, W.E.: Algebraic lower bounds for computing on encrypted data. Cryptology ePrint Archive, Report 2007/064 (2007)Google Scholar
  35. 35.
    Ostrovsky, R., Skeith, W.E.: A survey of single database PIR: Techniques and applications. Cryptology ePrint Archive, Report 2007/059 (2007)Google Scholar
  36. 36.
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: 1st TCC, pp. 1–20 (2004)Google Scholar
  37. 37.
    Rudich, S.: Limits on the provable consequences of one-way functions. PhD thesis, EECS Department, University of California, Berkeley (1988)Google Scholar
  38. 38.
    Simon, D.R.: Finding collisions on a one-way street: Can secure hash functions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  39. 39.
    Srinivasan, A., Zuckerman, D.: Computing with very weak random sources. SIAM J. Comput. 28(4), 1433–1459 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Stern, J.P.: A new efficient all-or-nothing disclosure of secrets protocol. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  41. 41.
    Wee, H.: One-way permutations, interactive hashing and statistically hiding commitments. In: 4th TCC, pp. 419–433 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Iftach Haitner
    • 1
  • Jonathan J. Hoch
    • 1
  • Gil Segev
    • 1
  1. 1.Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations