Black-Box Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One

  • Seung Geol Choi
  • Dana Dachman-Soled
  • Tal Malkin
  • Hoeteck Wee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4948)

Abstract

We show how to transform any semantically secure encryption scheme into a non-malleable one, with a black-box construction that achieves a quasi-linear blow-up in the size of the ciphertext. This improves upon the previous non-black-box construction of Pass, Shelat and Vaikuntanathan (Crypto ’06). Our construction also extends readily to guarantee non-malleability under a bounded-CCA2 attack, thereby simultaneously improving on both results in the work of Cramer et al. (Asiacrypt ’07).

Our construction departs from the oft-used paradigm of re-encrypting the same message with different keys and then proving consistency of encryptions; instead, we encrypt an encoding of the message with certain locally testable and self-correcting properties. We exploit the fact that low-degree polynomials are simultaneously good error-correcting codes and a secret-sharing scheme.

Keywords

Public-key encryption semantic security non-malleability black-box constructions 

References

  1. [bfm88]
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC, pp. 103–112 (1988)Google Scholar
  2. [bgw88]
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)Google Scholar
  3. [bhsv98]
    Bellare, M., Halevi, S., Sahai, A., Vadhan, S.P.: Many-to-one trapdoor functions and their relation to public-key cryptosystems. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 283–298. Springer, Heidelberg (1990)Google Scholar
  4. [chh+07]
    Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A., Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. [chk04]
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)Google Scholar
  6. [cs98]
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  7. [cs04]
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 45–64. Springer, Heidelberg (2004)Google Scholar
  8. [ddn00]
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MATHCrossRefMathSciNetGoogle Scholar
  9. [es02]
    Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryption schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint Archive, Report, /024, 2002. (2002), http://eprint.iacr.org/
  10. [gm84]
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MATHCrossRefMathSciNetGoogle Scholar
  11. [gmm07]
    Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA security for public key encryption. In: TCC, pp. 434–455 (2007)Google Scholar
  12. [gmr01]
    Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor functions on trapdoor predicates. In: FOCS, pp. 126–135 (2001)Google Scholar
  13. [gmw87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  14. [h08]
    Haitner, I.: Semi-Honest to Malicious Oblivious Transfer - The Black-Box Way. In: These proceedings (2008)Google Scholar
  15. [iklp06]
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: STOC, pp. 99–108 (2006)Google Scholar
  16. [ir89]
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: STOC, pp. 44–61 (1989)Google Scholar
  17. [l79]
    Lamport, L.: Constructing digital signatures from a one-way function. Technical Report SRI-CSL-98, SRI International Computer Science Laboratory (1979)Google Scholar
  18. [l06]
    Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under general assumptions. J. Cryptology 19(3), 359–377 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. [lp07]
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. [ny90]
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC, pp. 427–437 (1990)Google Scholar
  21. [psv06]
    Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable encryption scheme from any semantically secure one. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. [pw07]
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. Cryptology ePrint Archive, Report 2007/279 (2007), http://eprint.iacr.org/
  23. [r90]
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC, pp. 387–394 (1990)Google Scholar
  24. [rs91]
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  25. [rtv04]
    Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between cryptographic primitives. In: TCC, pp. 1–20 (2004)Google Scholar
  26. [s99]
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Seung Geol Choi
    • 1
  • Dana Dachman-Soled
    • 1
  • Tal Malkin
    • 1
  • Hoeteck Wee
    • 1
  1. 1.Columbia University 

Personalised recommendations