Advertisement

Cryptography and Game Theory: Designing Protocols for Exchanging Information

  • Gillat Kol
  • Moni Naor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4948)

Abstract

The goal of this paper is finding fair protocols for the secret sharing and secure multiparty computation (SMPC) problems, when players are assumed to be rational.

It was observed by Halpern and Teague (STOC 2004) that protocols with bounded number of iterations are susceptible to backward induction and cannot be considered rational. Previously suggested cryptographic solutions all share the property of having an essential exponential upper bound on their running time, and hence they are also susceptible to backward induction.

Although it seems that this bound is an inherent property of every cryptography based solution, we show that this is not the case. We suggest coalition-resilient secret sharing and SMPC protocols with the property that after any sequence of iterations it is still a computational best response to follow them. Therefore, the protocols can be run any number of iterations, and are immune to backward induction.

The mean of communication assumed is a broadcast channel, and we consider both the simultaneous and non-simultaneous cases.

Keywords

Nash Equilibrium Secret Sharing Secret Sharing Scheme Oblivious Transfer Exchange Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed Computing Meets Game Theory: Robust Mechanisms for Rational Secret Sharing and Multiparty Computation. In: PODC, pp. 53–62 (2006)Google Scholar
  2. 2.
    Barany, I.: Fair distribution protocols or how the players replace fortune. Mathematics of Operations Research 17, 327–340 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bellare, M., Micali, S.: Non-Interactive Oblivious Transfer. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Ben-Porath, E.: Cheap talk in games with incomplete information. Journal of Economic Theory 108, 45–71 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ben-Porath, E.: Correlation Without Mediation: Expanding the Set of Equilibria Outcomes by “Cheap” Pre-Play Procedures. Journal of Economic Theory 80, 108–122 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Halevi, S., Rabin, T.: A Cryptographic Solution to a Game Theoretic Problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts. Communications of the ACM 28(6), 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Garay, J., Jakobsson, M.: Timed Release of Standard Digital Signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 168–182. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Gerardi, D.: Unmediated communication in games with complete and incomplete information. Journal of Economic Theory 114, 104–131 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)Google Scholar
  12. 12.
    Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game. In: STOC, pp. 218–229 (1987)Google Scholar
  13. 13.
    Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and System Sciences 28, 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Halpern, J., Teague, V.: Rational Secret Sharing and Multiparty Computation. In: STOC, pp. 623–632 (2004)Google Scholar
  16. 16.
    Heller, Y.: A coalition-proof cheap-talk protocol (manuscript, 2005)Google Scholar
  17. 17.
    Izmalkov, S., Micali, S., Lepinski, M.: Rational Secure Computation and Ideal Mechanism Design. In: FOCS, pp. 585–595 (2005)Google Scholar
  18. 18.
    Kol, G., Naor, M.: Cryptography and Game Theory: Designing Protocols for Exchanging Information, full version: www.wisdom.weizmann.ac.il/%7enaor/PAPERS/crypto_games.html
  19. 19.
    Kol, G., Naor, M.: Games for Exchanging Information (manuscript, 2007)Google Scholar
  20. 20.
    Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely Fair SFE and Coalition-Safe Cheap Talk. In: PODC, pp. 1–10 (2004)Google Scholar
  21. 21.
    Lepinski, M., Micali, S., Shelat, A.: Collusion-Free Protocols. In: STOC, pp. 543–552 (2005)Google Scholar
  22. 22.
    Lindell, Y., Pinkas, B.: A Proof of Yao’s Protocol for Secure Two-Party Computation. In: ECCC, Report TR04-063 (2004)Google Scholar
  23. 23.
    Lysyanskaya, A., Triandopoulos, N.: Rationality and Adversarial Behavior in Multi-Party Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols. In: SODA, pp. 448–457 (2001)Google Scholar
  25. 25.
    Pinkas, B.: Fair Secure Two-Party Computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In: STOC, pp. 73–85 (1989)Google Scholar
  27. 27.
    Sahai, A., Vadhan, S.: A Complete Problem for Statistical Zero Knowledge. Journal of the ACM 50, 196–249 (2003)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Shoham, Y., Tennenholtz, M.: Non-Cooperative Computation: Boolean Functions with Correctness and Exclusivity. TCS 343(2), 97–113 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Urbano, A., Vila, J.: Computational Complexity and Communication: Coordination in Two-Player Games. Econometrica 70, 1893–1927 (1992)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Wegman, M., Carter, L.: New hash functions and their use in authentication and set equality. JCSS 22, 265–279 (1981)zbMATHMathSciNetGoogle Scholar
  32. 32.
    Wolf, S., Wullschleger, J.: Oblivious Transfer is Symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Yao, A.: How to Generate and Exchange Secrets. In: FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gillat Kol
    • 1
  • Moni Naor
    • 1
  1. 1.Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations