Lower Bounds on Implementing Robust and Resilient Mediators

  • Ittai Abraham
  • Danny Dolev
  • Joseph Y. Halpern
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4948)


We provide new and tight lower bounds on the ability of players to implement equilibria using cheap talk, that is, just allowing communication among the players. One of our main results is that, in general, it is impossible to implement three-player Nash equilibria in a bounded number of rounds. We also give the first rigorous connection between Byzantine agreement lower bounds and lower bounds on implementation. To this end we consider a number of variants of Byzantine agreement and introduce reduction arguments. We also give lower bounds on the running time of two player implementations. All our results extended to lower bounds on (k,t)-robust equilibria, a solution concept that tolerates deviations by coalitions of size up to k and deviations by up to t players with unknown utilities (who may be malicious).


Nash Equilibrium Broadcast Channel Cheap Talk Impossibility Result Punishment Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets game theory: Robust mechanisms for rational secret sharing and multiparty computation. In: Proc. 25th ACM Symp. Principles of Distributed Computing, pp. 53–62 (2006)Google Scholar
  2. 2.
    Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed computing meets game theory: Robust mechanisms for rational secret sharing and multiparty computation (unpublished manuscript, 2007)Google Scholar
  3. 3.
    Abraham, I., Dolev, D., Halpern, J.Y.: Lower bounds on implementing robust and resilient mediators. arXiv:0704.3646v2Google Scholar
  4. 4.
    Aumann, R.J.: Acceptable points in general cooperative n-person games. Contributions to the Theory of Games, Annals of Mathematical Studies IV, 287–324 (1959)MathSciNetGoogle Scholar
  5. 5.
    Aumann, R.J.: Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55, 1–18 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barany, I.: Fair distribution protocols or how the players replace fortune. Mathematics of Operations Research 17, 327–340 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. 20th ACM Symp. Theory of Computing, pp. 1–10 (1988)Google Scholar
  8. 8.
    Ben-Porath, E.: Cheap talk in games with incomplete information. J. Economic Theory 108(1), 45–71 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proc. 20th ACM Symp. Theory of Computing, pp. 11–19 (1988)Google Scholar
  11. 11.
    Crawford, V.P., Sobel, J.: Strategic information transmission. Econometrica 50(6), 1431–1451 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dodis, Y., Halevi, S., Rabin, T.: A cryptographic solution to a game theoretic problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Eliaz, K.: Fault-tolerant implementation. Review of Economic Studies 69(3), 589–610 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty processor. Journal of the ACM 32(2), 374–382 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fitzi, M., Hirt, M., Holenstein, T., Wullschleger, J.: Two-threshold broadcast and detectable multi-party computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 51–67. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Forges, F.: Universal mechanisms. Econometrica 58(6), 1341–1364 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proc. 19th ACM Symp. Theory of Computing, pp. 218–229 (1987)Google Scholar
  20. 20.
    Gordon, D., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation: extended abstract. In: Proc. 36th ACM Symp. Theory of Computing, pp. 623–632 (2004)Google Scholar
  22. 22.
    Heller, Y.: A minority-proof cheap-talk protocol (2005) (Unpublished manuscript)Google Scholar
  23. 23.
    Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mechanism design. In: Proc. 46th IEEE Symp. Foundations of Computer Science, pp. 585–595 (2005)Google Scholar
  24. 24.
    Lamport, L.: The weak byzantine generals problem. J. ACM 30(3), 668–676 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lepinksi, M., Micali, S., Shelat, A.: Collusion-free protocols. In: Proc. 37th ACM Symp. Theory of Computing, pp. 543–552 (2005)Google Scholar
  26. 26.
    Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and coalition-safe cheap talk. In: Proc. 23rd ACM Symp. Principles of Distributed Computing, pp. 1–10 (2004)Google Scholar
  27. 27.
    Lysyanskaya, A., Triandopoulos, N.: Rationality and Adversarial Behavior in Multi-party Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press (September 1997)Google Scholar
  29. 29.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proc. 21st ACM Symp. Theory of Computing, pp. 73–85 (1989)Google Scholar
  30. 30.
    Shamir, A., Rivest, R.L., Adelman, L.: Mental poker. In: Klarner, D.A. (ed.) The Mathematical Gardner, Prindle, Weber, Schmidt, Boston, Mass, pp. 37–43 (1981)Google Scholar
  31. 31.
    Urbano, A., Vila, J.E.: Computational complexity and communication: Coordination in two-player games. Econometrica 70(5), 1893–1927 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Urbano, A., Vila, J.E.: Computationally restricted unmediated talk under incomplete information. Economic Theory 23(2), 283–320 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Yao, A.: Protocols for secure computation (extended abstract). In: Proc. 23rd IEEE Symp. Foundations of Computer Science, pp. 160–164 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ittai Abraham
    • 1
  • Danny Dolev
    • 1
  • Joseph Y. Halpern
    • 2
  1. 1.Hebrew University 
  2. 2.Cornell University 

Personalised recommendations