Verifiably Secure Devices

  • Sergei Izmalkov
  • Matt Lepinski
  • Silvio Micali
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4948)


We put forward the notion of a verifiably secure device, in essence a stronger notion of secure computation, and achieve it in the ballot-box model. Verifiably secure devices

  1. 1

    Provide a perfect solution to the problem of achieving correlated equilibrium, an important and extensively investigated problem at the intersection of game theory, cryptography and efficient algorithms; and

  2. 1

    Enable the secure evaluation of multiple interdependent functions.



Global Memory Secure Computer Ideal Evaluation Input Address Correlate Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aumann, R.: Subjectivity and correlation in randomized strategies. J. Math. Econ. 1, 67–96 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bárány, I.: Fair distribution protocols or how the players replace fortune. Mathematics of Operation Research 17, 327–341 (1992)zbMATHCrossRefGoogle Scholar
  3. 3.
    Barrington, D.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. In: Proceedings of STOC (1986)Google Scholar
  4. 4.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: Proceedings of STOC (1988)Google Scholar
  5. 5.
    Ben-Porath, E.: Correlation without mediation: Expanding the set of equilibria outcomes by “cheap” pre-play procedures. Journal of Economic Theory 80, 108–122 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Canetti, R.: Universally composable security. A new paradaigm for cryptographic protocols. In: Proceedings of FOCS (2001)Google Scholar
  7. 7.
    Cleve, R.: Limits on the Security of Coin Flips When Half the Processors are Faulty. In: Proceedings of STOC (1986)Google Scholar
  8. 8.
    Dodis, Y., Halevi, S., Rabin, T.: A Cryptographic Solution to a Game Theoretic Problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, Springer, Heidelberg (2000)Google Scholar
  9. 9.
    Dodis, Y., Micali, S.: Parallel Reducibility for Information-Theoretically Secure Computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, Springer, Heidelberg (2000)Google Scholar
  10. 10.
    Gerardi, D.: Unmediated communication in games with complete and incomplete information. Journal of Economic Theory 114, 104–131 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of STOC (1987)Google Scholar
  12. 12.
    Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In: Proceedings of STOC (2004)Google Scholar
  13. 13.
    Izmalkov, S., Lepinski, M., Micali, S.: Rational secure function evaluation and ideal mechanism design. In: Proceedings of FOCS (2005)Google Scholar
  14. 14.
    Kushilevitz, E., Lindell, Y., Rabin, T.: Information-Theoretically Secure Protocols and Security under Composition. In: Proceedings of STOC (2006)Google Scholar
  15. 15.
    Lepinksi, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and coalition-safe cheap talk. In: Proceedings of PODC (2004)Google Scholar
  16. 16.
    Urbano, A., Vila, J.E.: Computational complexity and communication: Coordination in two-player games. Econometrica 70(5), 1893–1927 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Yao, A.: A proof of Yao’s protocol for secure two-party computation (2004) (Never published. The result is presented in Lindell and Pinkas),

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sergei Izmalkov
    • 1
  • Matt Lepinski
    • 2
  • Silvio Micali
    • 3
  1. 1.MIT Department of Economics 
  2. 2.BBN Technologies 
  3. 3.MIT CSAIL 

Personalised recommendations