Advertisement

A Linear-non-Linear Model for a Computational Call-by-Value Lambda Calculus (Extended Abstract)

  • Peter Selinger
  • Benoît Valiron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4962)

Abstract

We give a categorical semantics for a call-by-value linear lambda calculus. Such a lambda calculus was used by Selinger and Valiron as the backbone of a functional programming language for quantum computation. One feature of this lambda calculus is its linear type system, which includes a duplicability operator “!” as in linear logic. Another main feature is its call-by-value reduction strategy, together with a side-effect to model probabilistic measurements. The “!” operator gives rise to a comonad, as in the linear logic models of Seely, Bierman, and Benton. The side-effects give rise to a monad, as in Moggi’s computational lambda calculus. It is this combination of a monad and a comonad that makes the present paper interesting. We show that our categorical semantics is sound and complete.

Keywords

Quantum Computation Natural Transformation Categorical Semantic Operational Semantic Monoidal Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer Science 111, 3–57 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of LICS 2004, pp. 415–425 (2004)Google Scholar
  3. 3.
    Barendregt, H.P.: The Lambda-Calculus, its Syntax and Semantics. North Holland, Amsterdam (1984)zbMATHGoogle Scholar
  4. 4.
    Benton, N.: A mixed linear and non-linear logic: Proofs, terms and models (extended abstract). In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 121–135. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Benton, N., Bierman, G., de Paiva, V.C.V., Hyland, M.: A term calculus for intuitionistic linear logic. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 75–90. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Benton, N., Bierman, G., Hyland, M., de Paiva, V.C.V.: Linear lambda-calculus and categorical models revisited. In: Martini, S., Börger, E., Kleine Büning, H., Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, Springer, Heidelberg (1993)Google Scholar
  7. 7.
    Benton, N., Wadler, P.: Linear logic, monads and the lambda calculus. In: Proceedings of LICS 1996, pp. 420–431 (1996)Google Scholar
  8. 8.
    Bierman, G.: On Intuitionistic Linear Logic. PhD thesis, Computer Science Department, Cambridge University, Cambridge (1993)Google Scholar
  9. 9.
    Coecke, B.: Quantum information-flow, concretely, abstractly. In: Selinger, P., (ed.) Proceedings of QPL 2004. TUCS General Publication No. 33, Turku Centre for Computer Science pp. 57–73 (2004) Google Scholar
  10. 10.
    Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G., Kauffman, L., Lomonaco, S.J. (eds.) Mathematics of Quantum Computation and Technology, pp. 559–596. Chapman & Hall, Boca Raton (2007)Google Scholar
  11. 11.
    Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Proceedings of POPL 2005, ACM Press, New York (2005)Google Scholar
  12. 12.
    Lalire, M., Jorrand, P.: A process algebraic approach to concurrent and distributed computation: Operational semantics. In: Selinger, P. (ed.) Proceedings of QPL 2004. TUCS General Publication No. 33, Turku Centre for Computer Science, pp. 109–126 (2004)Google Scholar
  13. 13.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  14. 14.
    Moggi, E.: Notions of computation and monads. Information and Computation 93, 55–92 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Schalk, A.: What is a model for linear logic. Manuscript (2004)Google Scholar
  16. 16.
    Seely, R.A.G.: *-autonomous categories and cofree coalgebras. Contemporary Mathematics 92 (1989)Google Scholar
  17. 17.
    Selinger, P. (ed.): Proceedings of QPL 2004. TUCS General Publication No. 33, Turku Centre for Computer Science (2004)Google Scholar
  18. 18.
    Selinger, P.: Towards a quantum programming language. Mathematical Structures in Computer Science 14, 527–586 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science 16, 527–552 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Selinger, P., Valiron, B.: On a fully abstract model for a quantum linear functional language. In: Preliminary proceedings of QPL 2006, pp. 103–115 (2006)Google Scholar
  21. 21.
    van Tonder, A.: A lambda calculus for quantum computation. SIAM Journal of Computing 33, 1109–1135 (2004)zbMATHCrossRefGoogle Scholar
  22. 22.
    Wadler, P.: There’s no substitute for linear logic. Manuscript, presented at MFPS 1992 (1992)Google Scholar
  23. 23.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Peter Selinger
    • 1
  • Benoît Valiron
    • 2
  1. 1.Dalhousie University 
  2. 2.University of Ottawa 

Personalised recommendations