Stochastic Games with Lossy Channels

  • Parosh Aziz Abdulla
  • Noomene Ben Henda
  • Luca de Alfaro
  • Richard Mayr
  • Sven Sandberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4962)

Abstract

We consider turn-based stochastic games on infinite graphs induced by game probabilistic lossy channel systems (GPLCS), the game version of probabilistic lossy channel systems (PLCS). We study games with Büchi (repeated reachability) objectives and almost-sure winning conditions. These games are pure memoryless determined and, under the assumption that the target set is regular, a symbolic representation of the set of winning states for each player can be effectively constructed. Thus, turn-based stochastic games on GPLCS are decidable. This generalizes the decidability result for PLCS-induced Markov decision processes in [10].

References

  1. 1.
    Abdulla, P.A., Baier, C., Iyer, P., Jonsson, B.: Reasoning about probabilistic lossy channel systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 320–333. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Ben Henda, N., Mayr, R., Sandberg, S., de Alfaro, L.: Stochastic games with lossy channels. Technical Report 2007-005, Dept. of Information Technology, Uppsala University, Sweden (February 2007)Google Scholar
  3. 3.
    Abdulla, P.A., Bouajjani, A., d’Orso, J.: Deciding monotonic games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 1–14. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Abdulla, P.A., Henda, N.B., Mayr, R.: Verifying infinite Markov chains with a finite attractor or the global coarseness property. In: Proc. LICS 2005, 21st IEEE Int. Symp. on Logic in Computer Science, pp. 127–136 (2005)Google Scholar
  5. 5.
    Abdulla, P.A., Henda, N.B., Mayr, R., Sandberg, S.: Eager Markov chains. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 24–38. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Information and Computation 127(2), 91–101 (1996)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Abdulla, P.A., Rabinovich, A.: Verification of probabilistic systems with faulty communication. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 39–53. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Asarin, E., Collins, P.: Noisy Turing machines. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1031–1042. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Baier, C., Bertrand, N., Schnoebelen, P.: On computing fixpoints in well-structured regular model checking, with applications to lossy channel systems. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 347–361. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Baier, C., Bertrand, N., Schnoebelen, P.: Verifying nondeterministic probabilistic channel systems against ω-regular linear-time properties. ACM Transactions on Comp. Logic (to appear, 2006)Google Scholar
  11. 11.
    Bertrand, N., Schnoebelen, P.: Model checking lossy channels systems is probably decidable. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 120–135. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Chatterjee, K., Jurdziński, M., Henzinger, T.: Simple stochastic parity games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Condon, A.: The complexity of stochastic games. Information and Computation 96(2), 203–224 (1992)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    de Alfaro, L., Henzinger, T.: Concurrent omega-regular games. In: Proc. LICS 2000, 16th IEEE Int. Symp. on Logic in Computer Science, pp. 141–156. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  16. 16.
    de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. In: Proc. 39th Annual Symp. Foundations of Computer Science, pp. 564–575. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  17. 17.
    de Alfaro, L., Henzinger, T., Majumdar, R.: Symbolic algorithms for infinite-state games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 536–550. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. In: Proc. LICS 2004, 20th IEEE Int. Symp. on Logic in Computer Science, pp. 12–21 (2004)Google Scholar
  19. 19.
    Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive stochastic games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Finkel, A.: Decidability of the termination problem for completely specified protocols. Distributed Computing 7(3), 129–135 (1994)CrossRefGoogle Scholar
  21. 21.
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3) 2(7), 326–336 (1952)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Iyer, P., Narasimha, M.: Probabilistic lossy channel systems. In: Bidoit, M., Dauchet, M. (eds.) TAPSOFT 1997. LNCS, vol. 1214, pp. 667–681. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. D Van Nostad Co. (1966)Google Scholar
  24. 24.
    Rabinovich, A.: Quantitative analysis of probabilistic lossy channel systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1008–1021. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. Information Processing Letters 83(5), 251–261 (2002)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences 39(10), 1095–1100 (1953)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Proc. FOCS 1985, 26th Annual Symp. Foundations of Computer Science, pp. 327–338 (1985)Google Scholar
  28. 28.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoretical Computer Science 200, 135–183 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  • Noomene Ben Henda
    • 1
  • Luca de Alfaro
    • 2
  • Richard Mayr
    • 3
  • Sven Sandberg
    • 1
  1. 1.Uppsala UniversitySweden
  2. 2.University of CaliforniaSanta CruzUSA
  3. 3.NC State UniversityUSA

Personalised recommendations