Advertisement

Products of Message Sequence Charts

  • Philippe Darondeau
  • Blaise Genest
  • Loïc Hélouët
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4962)

Abstract

An effective way to assemble partial views of a distributed system is to compute their product. Given two Message Sequence Graphs, we address the problem of computing a Message Sequence Graph that generates the product of their languages, when possible. Since all MSCs generated by a Message Sequence Graph G may be run within fixed bounds on the message channels (that is, G is existentially bounded), a subproblem is to decide whether the considered product is existentially bounded. We show that this question is undecidable, but turns co-NP-complete in the restricted case where all synchronizations belong to the same process. This is the first positive result on the decision of existential boundedness. We propose sufficient conditions under which a Message Sequence Graph representing the product can be constructed.

References

  1. 1.
    Alur, R., Etessami, K., Yannakakis, M.: Realizability and Verification of MSC Graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 797–808. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Caillaud, B., Darondeau, P., Hélouët, L., Lesventes, G.: HMSCs as Partial Specifications.. with PNs as Completions. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 125–152. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Duboc, C.: Mixed Product and Asynchronous Automata. Theoretical Computer Science 48(3), 183–199 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Genest, B., Kuske, D., Muscholl, A.: A Kleene Theorem and Model Checking for a Class of Communicating Automata. Inf. Comput. 204(6), 920–956 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gunter, E., Muscholl, A., Peled, D.: Compositional Message Sequence Charts. STTT 5(1), 78–89, (2003); In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 496–511. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Genest, B., Muscholl, A., Peled, D.: Message Sequence Charts. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 537–558. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state High-level MSCs: Model-checking and Realizability. JCSS 72(4), 617–647 (2006); Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.): ICALP 2002. LNCS, vol. 2380, pp. 617–647. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Hélouët, L., Jard, C.: Conditions for synthesis of communicating automata from HMSCs. In: FMICS 2000, pp. 203–224 (2000)Google Scholar
  9. 9.
    Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M.A., Thiagarajan, P.S.: A theory of regular MSC languages. Inf. Comput. 202(1), 1–38 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Klein, J., Caillaud, B., Hélouët, L.: Merging scenarios. In: FMICS 2004, pp. 209–226 (2004)Google Scholar
  11. 11.
    Lohrey, M., Muscholl, A.: Bounded MSC communication. Inf. Comput. 189(2), 160–181 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Madhusudan, P., Meenakshi, B.: Beyond Message Sequence Graphs. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 256–267. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Morin, R.: Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Mukund, M., Kumar, K.N., Sohoni, M.A.: Bounded time-stamping in message-passing systems. TCS 290(1), 221–239 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Muscholl, A., Peled, D., Su, Z.: Deciding properties of Message Sequence Charts. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 226–242. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Muscholl, A., Peled, D.: Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Philippe Darondeau
    • 1
  • Blaise Genest
    • 1
  • Loïc Hélouët
    • 1
  1. 1.IRISARennes Cedex

Personalised recommendations