Advertisement

Erasure and Polymorphism in Pure Type Systems

  • Nathan Mishra-Linger
  • Tim Sheard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4962)

Abstract

We introduce Erasure Pure Type Systems, an extension to Pure Type Systems with an erasure semantics centered around a type constructor ∀ indicating parametric polymorphism. The erasure phase is guided by lightweight program annotations. The typing rules guarantee that well-typed programs obey a phase distinction between erasable (compile-time) and non-erasable (run-time) terms.

The erasability of an expression depends only on how its value is used in the rest of the program. Despite this simple observation, most languages treat erasability as an intrinsic property of expressions, leading to code duplication problems. Our approach overcomes this deficiency by treating erasability extrinsically.

Because the execution model of EPTS generalizes the familiar notions of type erasure and parametric polymorphism, we believe functional programmers will find it quite natural to program in such a setting.

Keywords

Dependent Type Typing Rule Typing Context Structural Induction Typing Judgment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    The Coq proof assistant, http://coq.inria.fr
  2. 2.
    Abadi, M., Cardelli, L., Curien, P.-L.: Formal parametric polymorphism. Theoretical Computer Science 121(1–2), 9–58 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Augustsson, L.: Cayenne – A language with dependent types. In: Proceedings of the Third ACM SIGPLAN International Conference on Functional Programming, pp. 239–250 (1998)Google Scholar
  4. 4.
    Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, Oxford University Press, Oxford (1992)Google Scholar
  5. 5.
    Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 460–475. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Brady, E.: Practical Implementation of a Dependently Typed Functional Programming Language. PhD thesis, University of Durham (2005)Google Scholar
  7. 7.
    Chen, C., Xi, H.: Combining programming with theorem proving. In: Proceedings of the Tenth ACM SIGPLAN International Conference on Functional Programming, pp. 66–77 (2005)Google Scholar
  8. 8.
    Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: Proceedings of the 33rd ACM SIGPLAN Symposium on Principles of Programming Languages, pp. 42–54 (2006)Google Scholar
  9. 9.
    Lin, C., McCreight, A., Shao, Z., Chen, Y., Guo, Y.: Foundational typed assembly language with certified garbage collection. In: First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering, pp. 326–338. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  10. 10.
    Luo, Z.: Computation and reasoning: A type theory for computer science. Oxford University Press, New York, USA (1994)zbMATHGoogle Scholar
  11. 11.
    Mairson, H.G.: Outline of a proof theory of parametricity. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523, pp. 313–327. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    McBride, C., McKinna, J.: The view from the left. Journal of Functional Programming 14(1), 69–111 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Miquel, A.: The implicit calculus of constructions. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 344–359. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Miquel, A.: Le Calcul des Constructions Implicite: Syntaxe et Sémantique. PhD thesis, Université Paris 7 (2001)Google Scholar
  15. 15.
    Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN Symposium on Principles of Programming Languages, pp. 106–119 (1997)Google Scholar
  16. 16.
    Peyton-Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-based type inference for GADTs. In: Proceedings of the Eleventh ACM SIGPLAN International Conference on Functional Programming (2006)Google Scholar
  17. 17.
    Pfenning, F.: Intensionality, extensionality, and proof irrelevance in modal type theory. In: LICS 2001: Proceedings of the 16th Annual Symposium on Logic in Computer Science, pp. 221–230. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  18. 18.
    Plotkin, G.D., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 361–375. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  19. 19.
    Sheard, T.: Languages of the future. In: Proceedings of the Nineteenth ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA Companion Volume, pp. 116–119 (2004)Google Scholar
  20. 20.
    Sheard, T., Pašalić, E.: Meta-programming with built-in type equality. In: Proceedings of the Fourth International Workshop on Logical Frameworks and Meta-Languages (LFM 2004), pp. 106–124 (2004), http://cs-www.cs.yale.edu/homes/carsten/lfm04/
  21. 21.
    Wadler, P.: Theorems for free! In: Functional Programming Languages and Computer Architecture, pp. 347–359. ACM Press, New York (1989)CrossRefGoogle Scholar
  22. 22.
    Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings of the 26th ACM SIGPLAN Symposium on Principles of Programming Languages, pp. 214–227 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nathan Mishra-Linger
    • 1
  • Tim Sheard
    • 1
  1. 1.Portland State University 

Personalised recommendations