Advertisement

Robust Analysis of Timed Automata Via Channel Machines

  • Patricia Bouyer
  • Nicolas Markey
  • Pierre-Alain Reynier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4962)

Abstract

Whereas formal verification of timed systems has become a very active field of research, the idealised mathematical semantics of timed automata cannot be faithfully implemented. Several works have thus focused on a modified semantics of timed automata which ensures implementability, and robust model-checking algorithms for safety, and later LTL properties have been designed. Recently, a new approach has been proposed, which reduces (standard) model-checking of timed automata to other verification problems on channel machines. Thanks to a new encoding of the modified semantics as a network of timed systems, we propose an original combination of both approaches, and prove that robust model-checking for coFlat-MTL, a large fragment of MTL, is EXPSPACE-Complete.

Keywords

Temporal Logic Fractional Part Robust Analysis Time Automaton Delay Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Altisen, K., Tripakis, S.: Implementation of timed automata: An issue of semantics or modeling? In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 273–288. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theor. Comp. Sci. 126(2), 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MATHMathSciNetGoogle Scholar
  4. 4.
    Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model checking of infinite paths in one-clock timed automata. Research Report LSV-07-29, ENS Cachan, France (2007)Google Scholar
  6. 6.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Probabilistic and topological semantics for timed automata. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 179–191. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality (109–118). In: Proc. 22nd Ann. Symp. Logic in Computer Science (LICS 2007), pp. 109–118. IEEE Comp. Soc. Press, Los Alamitos (2007)Google Scholar
  8. 8.
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of timed automata. Research Report LSV-05-06, ENS Cachan, France (2005)Google Scholar
  9. 9.
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of timed automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 238–249. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Bouyer, P., Markey, N., Reynier, P.-A.: Robust analysis of timed automata via channel machines. Research Report LSV-07-32, ENS Cachan, France (2007)Google Scholar
  11. 11.
    Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a model-checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Cassez, F., Henzinger, T.A., Raskin, J.-F.: A comparison of control problems for timed and hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Daws, C., Kordy, P.: Symbolic robustness analysis of timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 143–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementability of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementability of timed automata. Tech. Report 2004.30, Centre Fédéré en Vérification, Belgium (December 2005)Google Scholar
  16. 16.
    De Wulf, M., Doyen, L., Raskin, J.: Almost ASAP semantics: From timed models to timed implementations. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 296–310. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Dima, C.: Dynamical properties of timed automata revisited. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 130–146. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    French, T., McCabe-Dansted, J.C., Reynolds, M.: A temporal logic of robustness. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 193–205. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  20. 20.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  21. 21.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. J. Software Tools for Technology Transfer 1(1–2), 134–152 (1997)MATHCrossRefGoogle Scholar
  22. 22.
    Ouaknine, J., Worrell, J.: Revisiting digitization, robustness and decidability for timed automata. In: Proc. 18th Ann. Symp. Logic in Computer Science (LICS 2003), IEEE Comp. Soc. Press, Los Alamitos (2003)Google Scholar
  23. 23.
    Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Proc. 19th Ann. Symp. Logic in Computer Science (LICS 2005), pp. 188–197. IEEE Comp. Soc. Press, Los Alamitos (2005)CrossRefGoogle Scholar
  24. 24.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal Logic over finite words. Logical Methods in Comp. Sci. 3(1-8), 1–27 (2007)MathSciNetGoogle Scholar
  25. 25.
    Pnueli, A.: The temporal logic of programs. In: Proc. 18th Ann. Symp. Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE Comp. Soc. Press, Los Alamitos (1977)Google Scholar
  26. 26.
    Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  27. 27.
    Swaminathan, M., Fränzle, M.: A symbolic decision procedure for robust safety of timed systems. In: Proc. 14th Intl Symp. Temporal Representation and Reasoning (TIME 2007), p. 192. IEEE Comp. Soc. Press, Los Alamitos (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Patricia Bouyer
    • 1
    • 2
  • Nicolas Markey
    • 1
  • Pierre-Alain Reynier
    • 3
  1. 1.LSV, CNRS & ENS de CachanFrance
  2. 2.Oxford University Computing LaboratoryUK
  3. 3.Université Libre de BruxellesBelgium

Personalised recommendations