Advertisement

Preserving the Privacy of Sensitive Relationships in Graph Data

  • Elena Zheleva
  • Lise Getoor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4890)

Abstract

In this paper, we focus on the problem of preserving the privacy of sensitive relationships in graph data. We refer to the problem of inferring sensitive relationships from anonymized graph data as link re-identification. We propose five different privacy preservation strategies, which vary in terms of the amount of data removed (and hence their utility) and the amount of privacy preserved. We assume the adversary has an accurate predictive model for links, and we show experimentally the success of different link re-identification strategies under varying structural characteristics of the data.

Keywords

privacy anonymization identification link mining social network analysis noisy-or graph data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Approximation algorithms for k-anonimity. Journal of Privacy Technology (November 2005)Google Scholar
  2. 2.
    Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x: Anonymized social networks, hidden patterns, and structural steganography. In: 16th International Conference on World Wide Web (WWW), pp. 181–190 (2007)Google Scholar
  3. 3.
    Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In: IEEE 21st International Conference on Data Engineering (April 2005)Google Scholar
  4. 4.
    Chawla, S., Dwork, C., Mcsherry, F., Smith, A., Wee, H.: Toward privacy in public databases. In: Proceedings of the Theory of Cryptography Conference (2005)Google Scholar
  5. 5.
    Evfimievski, A., Gehrke, J., Srikant., R.: Limiting privacy breaches in privacy preserving data mining. In: ACM Principles of database systems (PODS), pp. 211–222 (June 2003)Google Scholar
  6. 6.
    Getoor, L., Diehl, C.P.: Link mining: A survey. SIGKDD Explor. Newsl. 7(2), 3–12 (2005)CrossRefGoogle Scholar
  7. 7.
    Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing social networks (March 2007)Google Scholar
  8. 8.
    Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: IEEE 23rd International Conference on Data Engineering, pp. 106–115 (April 2007)Google Scholar
  9. 9.
    Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. In: 22nd IEEE International Conference on Data Engineering (2006)Google Scholar
  10. 10.
    Miklau, G., Suciu, D.: A formal analysis of information disclosure in data exchange. In: ACM Conference on Management of Data (SIGMOD), pp. 575–586 (2004)Google Scholar
  11. 11.
    Nergiz, M.E., Atzori, M., Clifton, C.: Hiding the presence of individuals from shared databases. In: 26th ACM SIGMOD International Conference on Management of Data (June 2007)Google Scholar
  12. 12.
    Nergiz, M.E., Clifton, C.: Thoughts on k-anonymization. In: IEEE 22nd International Conference on Data Engineering Workshops (ICDEW), p. 96 (April 2006)Google Scholar
  13. 13.
    Nergiz, M.E., Clifton, C.: Multirelational k-anonymity. In: IEEE 23rd International Conference on Data Engineering Posters (April 2007)Google Scholar
  14. 14.
    Pang, R., Paxson, V.: A high-level programming environment for packet trace anonymization and transformation. In: ACM SIGSOMM (2003)Google Scholar
  15. 15.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Inc., San Mateo, California. Morgan Kaufmann Publishers, San Francisco (1988)Google Scholar
  16. 16.
    Samarati, P.: Protecting respondents’ identities in microdata release. Knowledge and Data Engineering 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  17. 17.
    Singliar, T., Hauskrecht, M.: Noisy-or component analysis and its application to link analysis. Journal of Machine Learning Research 7, 2189–2213 (2006)MathSciNetGoogle Scholar
  18. 18.
    Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty 10(5), 571–588 (2002)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Elena Zheleva
    • 1
  • Lise Getoor
    • 1
  1. 1.Computer Science DepartmentUniversity of Maryland

Personalised recommendations