An Ad Omnia Approach to Defining and Achieving Private Data Analysis

  • Cynthia Dwork
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4890)

Abstract

We briefly survey several privacy compromises in published datasets, some historical and some on paper. An inspection of these suggests that the problem lies with the nature of the privacy-motivated promises in question. These are typically syntactic, rather than semantic. They are also ad hoc , with insufficient argument that fulfilling these syntactic and ad hoc conditions yields anything like what most people would regard as privacy. We examine two comprehensive, or ad omnia, guarantees for privacy in statistical databases discussed in the literature, note that one is unachievable, and describe implementations of the other.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achugbue, J.O., Chin, F.Y.: The Effectiveness of Output Modification by Rounding for Protection of Statistical Databases. INFOR 17(3), 209–218 (1979)Google Scholar
  2. 2.
    Adam, N.R., Wortmann, J.C.: Security-Control Methods for Statistical Databases: A Comparative Study. ACM Computing Surveys 21(4), 515–556 (1989)CrossRefGoogle Scholar
  3. 3.
    Agrawal, D., Aggarwal, C.C.: On the design and Quantification of Privacy Preserving Data Mining Algorithms. In: Proceedings of the 20th Symposium on Principles of Database Systems, pp. 247–255 (2001)Google Scholar
  4. 4.
    Agrawal, R., Srikant, R.: Privacy-Preserving Data Mining. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 439–450. ACM Press, New York (2000)CrossRefGoogle Scholar
  5. 5.
    Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore Art Thou r3579x?: Anonymized Social Networks, Hidden Patterns, and Structural Steganography. In: Proceedings of the 16th International World Wide Web Conference, pp. 181–190 (2007)Google Scholar
  6. 6.
    Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, Accuracy, and Consistency Too: A Holistic Solution to Contingency Table Release. In: Proceedings of the 26th Symposium on Principles of Database Systems, pp. 273–282 (2007)Google Scholar
  7. 7.
    Beck, L.L.: A Security Mechanism for Statistical Databases. ACM TODS 5(3), 316–338 (1980)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical Privacy: The SuLQ framework. In: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (June 2005)Google Scholar
  9. 9.
    Chawla, S., Dwork, C., McSherry, F., Smith, A., Wee, H.: Toward Privacy in Public Databases. In: Proceedings of the 2nd Theory of Cryptography Conference (2005)Google Scholar
  10. 10.
    Chin, F.Y., Ozsoyoglu, G.: Auditing and infrence control in statistical databases, IEEE Trans. Softw. Eng. SE-8(6), 113–139 (April 1982)Google Scholar
  11. 11.
    Dalenius, T.: Towards a Methodology for Statistical Disclosure Control. Statistik Tidskrift 15, 429–222 (1977)Google Scholar
  12. 12.
    Denning, D.E.: Secure Statistical Databases with Random Sample Queries. ACM Transactions on Database Systems 5(3), 291–315 (1980)MATHCrossRefGoogle Scholar
  13. 13.
    Denning, D., Denning, P., Schwartz, M.: The Tracker: A Threat to Statistical Database Security. ACM Transactions on Database Systems 4(1), 76–96 (1979)CrossRefGoogle Scholar
  14. 14.
    Dinur, I., Nissim, K.: Revealing Information While Preserving Privacy. In: Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 202–210 (2003)Google Scholar
  15. 15.
    Duncan, G.: Confidentiality and statistical disclosure limitation. In: Smelser, N., Baltes, P. (eds.) International Encyclopedia of the Social and Behavioral Sciences, Elsevier, New York (2001)Google Scholar
  16. 16.
    Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Dwork, C., et al.: Our Data, Ourselves: Privacy Via Distributed Noise Generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Dwork, C., McSherry, F., Talwar, K.: The Price of Privacy and the Limits of LP Decoding. In: Proceedings of the 39th ACM Symposium on Theory of Computing, pp. 85–94 (2007)Google Scholar
  19. 19.
    Dwork, C., Nissim, K.: Privacy-Preserving Datamining on Vertically Partitioned Databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating Noise to Sensitivity in Private Data Analysis. In: Proceedings of the 3rd Theory of Cryptography Conference, pp. 265–284 (2006)Google Scholar
  21. 21.
    Evfimievski, A.V., Gehrke, J., Srikant, R.: Limiting Privacy Breaches in Privacy Preserving Data Mining. In: Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 211–222 (2003)Google Scholar
  22. 22.
    Dobkin, D., Jones, A., Lipton, R.: Secure Databases: Protection Against User Influence. ACM TODS 4(1), 97–106 (1979)CrossRefGoogle Scholar
  23. 23.
    Fellegi, I.: On the question of statistical confidentiality. Journal of the American Statistical Association 67, 7–18 (1972)MATHCrossRefGoogle Scholar
  24. 24.
    Fienberg, S.: Confidentiality and Data Protection Through Disclosure Limitation: Evolving Principles and Technical Advances, IAOS Conference on Statistics, Development and Human Rights (September 2000), http://www.statistik.admin.ch/about/international/fienberg_final_paper.doc
  25. 25.
    Fienberg, S., Makov, U., Steele, R.: Disclosure Limitation and Related Methods for Categorical Data. Journal of Official Statistics 14, 485–502 (1998)Google Scholar
  26. 26.
    Franconi, L., Merola, G.: Implementing Statistical Disclosure Control for Aggregated Data Released Via Remote Access, Working Paper No. 30, United Nations Statistical Commission and European Commission, joint ECE/EUROSTAT work session on statistical data confidentiality (April 2003), http://www.unece.org/stats/documents/2003/04/confidentiality/wp.30.e.pdf
  27. 27.
    Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Gusfield, D.: A Graph Theoretic Approach to Statistical Data Security. SIAM J. Comput. 17(3), 552–571 (1988)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Lefons, E., Silvestri, A., Tangorra, F.: An analytic approach to statistical databases. In: 9th Int. Conf. Very Large Data Bases, pp. 260–274. Morgan Kaufmann, San Francisco (1983)Google Scholar
  30. 30.
    Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-Diversity: Privacy Beyond k-Anonymity. In: Proceedings of the 22nd International Conference on Data Engineering (ICDE 2006), p. 24 (2006)Google Scholar
  31. 31.
    McSherry, F., Talwar, K.: Mechanism Design via Differential Privacy. In: Proceedings of the 48th Annual Symposium on Foundations of Computer Science (2007)Google Scholar
  32. 32.
    Narayanan, A., Shmatikov, V.: How to Break Anonymity of the Netflix Prize Dataset. How to Break Anonymity of the Netflix Prize Dataset, http://www.cs.utexas.edu/~shmat/shmat_netflix-prelim.pdf
  33. 33.
    Nissim, K., Raskhodnikova, S., Smith, A.: Smooth Sensitivity and Sampling in Private Data Analysis. In: Proceedings of the 39th ACM Symposium on Theory of Computing, pp. 75–84 (2007)Google Scholar
  34. 34.
    Raghunathan, T.E., Reiter, J.P., Rubin, D.B.: Multiple Imputation for Statistical Disclosure Limitation. Journal of Official Statistics 19(1), 1–16 (2003)Google Scholar
  35. 35.
    Reiss, S.: Practical Data Swapping: The First Steps. ACM Transactions on Database Systems 9(1), 20–37 (1984)MATHCrossRefGoogle Scholar
  36. 36.
    Rubin, D.B.: Discussion: Statistical Disclosure Limitation. Journal of Official Statistics 9(2), 461–469 (1993)Google Scholar
  37. 37.
    Shoshani, A.: Statistical databases: Characteristics, problems and some solutions. In: Proceedings of the 8th International Conference on Very Large Data Bases (VLDB 1982), pp. 208–222 (1982)Google Scholar
  38. 38.
    Samarati, P., Sweeney, L.: Protecting Privacy when Disclosing Information: k-Anonymity and its Enforcement Through Generalization and Specialization, Technical Report SRI-CSL-98-04, SRI Intl. (1998)Google Scholar
  39. 39.
    Samarati, P., Sweeney, L.: Generalizing Data to Provide Anonymity when Disclosing Information (Abstract). In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, p. 188 (1998)Google Scholar
  40. 40.
    Sweeney, L.: Weaving Technology and Policy Together to Maintain Confidentiality. J. Law Med. Ethics 25(2-3), 98–110 (1997)CrossRefGoogle Scholar
  41. 41.
    Sweeney, L.: k-anonymity: A Model for Protecting Privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Sweeney, L.: Achieving k-Anonymity Privacy Protection Using Generalization and Suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 571–588 (2002)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Xiao, X., Tao, Y.: M-invariance: Towards privacy preserving re-publication of dynamic datasets. In: SIGMOD 2007, pp. 689–700 (2007)Google Scholar
  44. 44.
    Yekhanin, S.: Private communication (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Cynthia Dwork
    • 1
  1. 1.Microsoft Research 

Personalised recommendations