A Refinement Operator Based Learning Algorithm for the \(\mathcal{ALC}\) Description Logic

  • Jens Lehmann
  • Pascal Hitzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4894)

Abstract

With the advent of the Semantic Web, description logics have become one of the most prominent paradigms for knowledge representation and reasoning. Progress in research and applications, however, faces a bottleneck due to the lack of available knowledge bases, and it is paramount that suitable automated methods for their acquisition will be developed. In this paper, we provide the first learning algorithm based on refinement operators for the most fundamental description logic \(\mathcal{ALC}\). We develop the algorithm from thorough theoretical foundations and report on a prototype implementation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. In: Shavlik, J.W., Dietterich, T.G. (eds.) Readings in Machine Learning, pp. 201–204. Morgan Kaufmann, San Francisco (1990)Google Scholar
  4. 4.
    Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 754–760. AAAI Press, Menlo Park (1993)Google Scholar
  5. 5.
    Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experimental results. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning, may 1994, pp. 121–133. Morgan Kaufmann, San Francisco (1994)Google Scholar
  6. 6.
    Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept formation in expressive description logics. In: ECML 2004. LNCS (LNAI), vol. 3201, Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Iannone, L., Palmisano, I.: An algorithm based on counterfactuals for concept learning in the semantic web. In: Proceedings of the 18th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Bari, Italy, June 2005, pp. 370–379 (2005)Google Scholar
  9. 9.
    Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \(\mathcal{ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2007)Google Scholar
  10. 10.
    Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \(\mathcal{ALC}\) description logic. In: Technical report, University of Leipzig (2007), http://www.jens-lehmann.org
  11. 11.
    Lisi, F.A., Malerba, D.: Ideal refinement of descriptions in AL-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Michalski, R.S.: Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(4), 349–361 (1980)MATHCrossRefGoogle Scholar
  13. 13.
    Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Winston, P.: Learning structural descriptions from examples. In: Winston, P. (ed.) The Psychology of Computer Vision, pp. 157–209. McGraw-Hill, New York (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jens Lehmann
    • 1
  • Pascal Hitzler
    • 2
  1. 1.Department of Computer ScienceUniversität LeipzigLeipzigGermany
  2. 2.AIFB InstituteUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations