Applying Inductive Logic Programming to Process Mining

  • Evelina Lamma
  • Paola Mello
  • Fabrizio Riguzzi
  • Sergio Storari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4894)


The management of business processes has recently received a lot of attention. One of the most interesting problems is the description of a process model in a language that allows the checking of the compliance of a process execution (or trace) to the model. In this paper we propose a language for the representation of process models that is inspired to the SCIFF language and is an extension of clausal logic. A process model is represented in the language as a set of integrity constraints that allow conjunctive formulas as disjuncts in the head. We present an approach for inducing these models from data: we define a subsumption relation for the integrity constraints, we define a refinement operator and we adapt the algorithm ICL to the problem of learning such formulas. The system has been applied to the problem of inducing the model of a sealed bid auction and of the NetBill protocol. The data used for learning and testing were randomly generated from correct models of the processes.


Process Mining Learning from Interpretations Business Processes Interaction Protocols 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An overview of workflow management: From process modeling to workflow automation infrastructure. Distributed and Parallel Databases 3(2), 119–153 (1995)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data Knowl. Eng. 47(2), 237–267 (2003)CrossRefGoogle Scholar
  4. 4.
    Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)CrossRefGoogle Scholar
  5. 5.
    Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive interpretation for open societies. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, Springer, Heidelberg (2003)Google Scholar
  6. 6.
    De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS, vol. 997, Springer, Heidelberg (1995)Google Scholar
  7. 7.
    van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Clark, K.L.: Negation as failure. In: Logic and Databases, Plenum Press, New York (1978)Google Scholar
  9. 9.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: The SCIFF framework. In: ACM Transactions on Computational Logics (accepted for publication, 2007)Google Scholar
  10. 10.
    Raedt, L.D., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146 (1997)zbMATHCrossRefGoogle Scholar
  11. 11.
    Apt, K.R., Bezem, M.: Acyclic programs. New Generation Comput 9(3/4), 335–364 (1991)CrossRefGoogle Scholar
  12. 12.
    Chavez, A., Maes, P.: Kasbah: An agent marketplace for buying and selling goods. In: Proceedings of the First International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM 1996), London, April 1996, pp. 75–90 (1996)Google Scholar
  13. 13.
    Cox, B., Tygar, J., Sirbu, M.: Netbill security and transaction protocol. In: Proceedings of the First USENIX Workshop on Electronic Commerce, New York (July 1995)Google Scholar
  14. 14.
  15. 15.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Jorge, A., Brazdil, P.: Integrity constraints in ilp using a monte carlo approach. In: ILP 1996. LNCS, vol. 1314, pp. 229–244. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Evelina Lamma
    • 1
  • Paola Mello
    • 2
  • Fabrizio Riguzzi
    • 1
  • Sergio Storari
    • 1
  1. 1.ENDIFUniversità di FerraraFerraraItaly
  2. 2.DEISUniversità di BolognaBolognaItaly

Personalised recommendations