Advertisement

Security of Digital Signature Schemes in Weakened Random Oracle Models

  • Akira Numayama
  • Toshiyuki Isshiki
  • Keisuke Tanaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4939)

Abstract

We formalize the notion of several weakened random oracle models in order to capture which property of a hash function is crucial to prove the security of a cryptographic scheme. In particular, we focus on augmenting the random oracle with additional oracles that respectively return collisions, second-preimages, and first-preimages. We study the security of the full domain hash signature scheme, as well as three variants thereof in the weakened random oracle models, leading to a separation result.

Keywords

random oracle model digital signature collision preimage 

References

  1. 1.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. J. Cryptology 17(2), 81–104 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Liskov, M.: Constructing an ideal hash function from weak ideal compression functions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Pasini, S., Vaudenay, S.: Hash-and-sign with weak hashing made secure. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 338–354. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Coron, J.S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ahrens, J.H., Dieter, U.: Computer methods for sampling from Gamma, Beta, Poisson and Binomial distributions. Computing 12, 223–246 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hashing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Akira Numayama
    • 1
  • Toshiyuki Isshiki
    • 1
    • 2
  • Keisuke Tanaka
    • 1
  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyTokyoJapan
  2. 2.NEC CorporationKanagawaJapan

Personalised recommendations