European Robotics Symposium 2008 pp 263-272

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 44)

Scalable Operators for Feature Extraction on 3-D Data

  • Shanmugalingam Suganthan
  • Sonya Coleman
  • Bryan Scotney

Summary

Real-time extraction of features from range images can play an important role in robotic vision tasks such as localisation and navigation. Feature driven segmentation of range images has been primarily used for 3D object recognition, and hence the accuracy of the detected features is a prominent issue. Feature extraction on range data has proven to be a more complex problem than on intensity images due to both the irregular distribution of range images. This paper presents a general approach to the development of scalable derivative operators using a finite element framework that can be applied directly to processing regularly or irregularly distributed range image data. The gradient operators of varying scales are evaluated with respect to their performance on regular and irregular grids.

Keywords

3D Range Data Feature extraction Gradient operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdou, I.E., Pratt, W.K.: Quantitative Design and Evaluation of Enhancement/ Threshold Edge Detectors. Proceedings of the IEEE 67(5) (1979)Google Scholar
  2. 2.
    Al-Hujazi, E., Sodd, A.: Range Image Segmentation with applications to Robot Bin-Picking Using Vacuum Gripper. IEEE Trans. Systems, Man, and Cybernetics 20(6) (1990)Google Scholar
  3. 3.
    Becker, E.B., Carey, G.F., Oden, J.T.: Finite Elements: An Introduction. Prentice Hall, London (1981)MATHGoogle Scholar
  4. 4.
    Bellon, O.P., et al.: Edge Detection to Guide Range Image Segmentation by Clustering Techniques. In: IEEE Int. Conf. on Image Processing, Kobe, Japan (1999)Google Scholar
  5. 5.
    Bellon, O., Silva, L.: New Improvements on Range Image Segmentation by Edge Detection Techniques. In: Proceedings of the workshop on Artificial Intelligence and Computer Vision (2000)Google Scholar
  6. 6.
    Besl, P.J.: Active, optical range imaging sensors. Machine Vision and Apps 1, 127–152 (1988)CrossRefGoogle Scholar
  7. 7.
    Cheng, J.-C., Don, H.-S.: Roof Edge Detection: A Morphological Skeleton Approach. In: Advances in Machine Vision: Strategies and Application, World Scientific, Singapore, pp. 171–191 (1992)Google Scholar
  8. 8.
    Coleman, S.A., Scotney, B.W., Suganthan, S.: Feature Extraction on Range Images - A New Approach. In: Coleman, S.A., Scotney, B.W., Suganthan, S. (eds.) Proceedings of IEEE International Conference on Robotics and Automation, Rome, pp. 1098–1103 (2007)Google Scholar
  9. 9.
    De Bakker, M.: The PSD chip, high speed acquisition of range images, PhD Thesis, Delft University of Technology (2000)Google Scholar
  10. 10.
    Dias, P., et al.: Combining Intensity and Range Images for 3D Modelling. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2003) (2003)Google Scholar
  11. 11.
    Flynn, P.J., Jain, A.K.: Three-dimensional object recognition. In: Handbook of Pattern Recognition and Image Processing: Computer Vision, pp. 497–541, Academic Press, San Diego (1994)Google Scholar
  12. 12.
    Franklin, D., Firby, R.J.: Integrating Range and Object Data for Robot Navigation. In: Proceedings of the first international conference on Autonomous agents,Marina del Rey, California, United States, pp. 185–192 (1997)Google Scholar
  13. 13.
    Huber, D., Carmichael, O., Hebert, M.: 3-D Map Reconstruction from Range Data, In:Proc. of the IEEE Inter. In: Conf. on Robotics & Automation, San Francisco, CA, pp. 891–897 (2000)Google Scholar
  14. 14.
    Jarvis, R.A.: Range Sensing for Computer Vision. In: Three-Dimensional Object Recognition Systems, pp. 17–56. Elsevier Science, Amsterdam (1993)Google Scholar
  15. 15.
    Jiang, X.Y., Bunke, H.: Edge detection in range image based on scan line approximation. Computer Vision ad Image Understanding 73(2), 183–199 (1999)CrossRefGoogle Scholar
  16. 16.
    Jiang, X.Y., Bunke, H.: Fast Segmentation of Range Images into Planar Regions by Scan Line Grouping. Machine Vision and Applications 7(2), 115–122 (1994)CrossRefGoogle Scholar
  17. 17.
    Kaveti, S., et al.: Second-Order Implicit Polynomials for segmentation of Range Images. Pattern Recognition 29(6), 937–949 (1996)CrossRefGoogle Scholar
  18. 18.
    Krishnapuram, R., Gupta, S.: Morphological Methods for Detection and Classification for Edges in Range Images. Journal of Mathematical Imaging Vision, 351–375 (1992)Google Scholar
  19. 19.
    Neira, J., Tardos, J.D., Horn, J., Schmidt, G.: Fusing Range and Intensity Images for Mobile Robot Localization. IEEE Transactions on Robotics and Automation 15(1), 76–84 (1999)CrossRefGoogle Scholar
  20. 20.
    Newman, T.S., Jain, A.K.: A system for 3D CAD-based inspection using range images. Pattern Recognition 28(10), 1555–1574 (1995)CrossRefGoogle Scholar
  21. 21.
    Parvin, B., Medioni, G.: Adaptive Multiscale Feature Extraction From Range Data. Computer Vision Graphics, Image Understanding 45, 346–356 (1989)CrossRefGoogle Scholar
  22. 22.
    Sabata, B., Aggarwal, J.K.: Surface correspondence and motion computation from a pair of range images. Computer Vision and Image Understanding 63, 232–250 (1996)CrossRefGoogle Scholar
  23. 23.
    Sappa, A.D., Devy, M.: Fast Range Image Segmentation by an Edge Detection Strategy. In: Proc 3rd Int. Conference on 3D Digital Imaging and Modelling, Quebec, Canada, pp. 292–299 (2001)Google Scholar
  24. 24.
    Trucco, E., Fisher, R.B.: Experiments in Curvature-Based Segmentation of Range Data. IEEE Trans. Pattern Analysis and Machine Intelligence 17(2), 177–182 (1995)CrossRefGoogle Scholar
  25. 25.
    Umeda, K., Arai, T.: Industrial Vision System by Fusing Range image and Intensity Image. Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 337–344 (1994)Google Scholar
  26. 26.
    Zhao, D., Li, S.: A 3D image processing method for manufacturing process automation. In: Computer in Industry, vol. 56, pp. 975–985. Elsevier, Amsterdam (2005)Google Scholar
  27. 27.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Shanmugalingam Suganthan
    • 1
  • Sonya Coleman
    • 1
  • Bryan Scotney
    • 2
  1. 1.School of Computing and Intelligent SystemsUniversity of UlsterNorthern Ireland
  2. 2.School of Computing and Information EngineeringUniversity of UlsterNorthern Ireland

Personalised recommendations