Propose of a Benchmark for Pole Climbing Robots

  • Mahmoud Tavakoli
  • Lino Marques
  • Anibal T. de Almeida
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 44)


Development of climbing robots was a challenging area during last decade and received an increased attention in recent years. On the other hand benchmarking is considered an important factor for robotic researches as it can reduce unnecessary efforts and orient re-searches to the proper direction. In this paper a set of benchmarks and testing methodologies for pole climbing robots are proposed.


Pole climbing robots Benchmarking Testing Methodology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    del Pobil, A.P.: Benchmarks in Robotics Research. In: IROS 2006 Workshop on benchmarks in robotics research, Beijing, China (2006)Google Scholar
  2. 2.
    del Pobil, A.P.: Why do We Need Benchmarks in Robotics Research? In: IROS 2006 Workshop on benchmarks in robotics research, Beijing, China (2006)Google Scholar
  3. 3.
    Hanks, S., Pollack, M.E., Cohen, E.: Benchmarks, Test Beds, Controlled Experimentation, and the Design of Agent Architectures. AI Magazine 14(4) (1993)Google Scholar
  4. 4.
    Jacoff, A., Messina, E., Evans, J.: Reference Test Arenas for Autonomous Mobile Robots. In: 14th International FLAIRS Conference (2001)Google Scholar
  5. 5.
    Dillmann, R.: Benchmarks for Robotics Research. EURON (April 2004),
  6. 6.
    Dulimarta, H., Tummala, R.L.: Design and control of miniature climbing robots with nonholonomic constraints. In: World Congress on Intelligent Control and Automation, Shanghai, P.R.China (2002)Google Scholar
  7. 7.
    Nagakubo, A., Hirose, S.: Walking and running of the quadruped wall climbing robot. In: IEEE Int. Conf. on Rob. And Aut., vol. 2, pp. 1005–1012 (1994)Google Scholar
  8. 8.
    Rachkov, M.: Control of climbing robot for rough surfaces. In: Int. Workshop on Robot Motion and Control, pp. 101–105 (2002)Google Scholar
  9. 9.
    Ryu, S.W., Park, J.J., Ryew, S.M., Choi, H.R.: Self-contained wall-climbing robot with closed link mechanism. In: IEEE/RSJ Int. Conf. on Int. Rob. And Sys, Maui, HI (2001)Google Scholar
  10. 10.
    Yan, W., Shuliang, L., Dianguo, X., Yanzheng, Z., Hao, S., Xuesban, G.: Development and application of wall-climbing robots. In: IEEE Int. Conf. on Rob. And Aut. Detroit, MI (1999)Google Scholar
  11. 11.
    Grieco, J.C., Prieto, M., Armada, M., de Santos, P.G.: A six-legged climbing robot for high payloads. In: IEEE Int. Conf. on Cont. App., Trieste, Italy,Google Scholar
  12. 12.
    Hirose, S., Nagabuko, A., Toyama, R.: Machine that can walk and climb on floors, walls, and ceilings. In: ICAR 1991, Pisa, Italy, pp. 753–758 (1991)Google Scholar
  13. 13.
    Bevly, D., Dubowsky, S., Mavroidis, C.: A simplified Cartesian-computed torque controller for highly geared systems and its application to an experimental climbing robot. ASME J. of Dynamic Systems, Measurement, and Control 122(1), 27–32 (2000)CrossRefGoogle Scholar
  14. 14.
    Xu, Y., Brown, H., Friendman, M., Kanade, T.: Control system of the selfmobile space manipulator. IEEE Tr. on Cont. Sys. Tech. 2(3), 207–219 (1994)CrossRefGoogle Scholar
  15. 15.
    Yim, M., Homans, S., Roufas, K.: Climbing with snake-robots. In: IFAC Workshop on Mobile Robot Technology, Jejudo, Korea (2001)Google Scholar
  16. 16.
    Amano, H., Osuka, K., Tarn, T.J.: Development of vertically moving robot with gripping handrails for fire fighting. In: IEEE/RSJ Int. Conf. on Int. Rob. And Sys. Maui, HI (2001)Google Scholar
  17. 17.
    Balaguer, C., Giménez, A., Pastor, J., Padrón, V., Abderrahim, M.: A climbing autonomous robot for inspection applications in 3D complex environments. Robotica 18, 287–297 (2000)CrossRefGoogle Scholar
  18. 18.
    Neubauer, W.: A spider-like robot that climbs vertically in ducts or pipes. In: Int. Conf. on Int. Rob. And Sys., Munich, Germany, pp. 1178–1185 (1994)Google Scholar
  19. 19.
    Roßmann, T., Pfeiffer, F.: Control of an eight legged pipe crawling robot. In: Int. Symp. on Experimental Robotics, pp. 353–346 (1997)Google Scholar
  20. 20.
    Almonacid, M., Saltarén, R., Aracil, R., Reinoso, O.: Motion planning of a climbing parallel robot. IEEE Tr. on Rob. And Aut. 19(3), 485–489 (2003)CrossRefGoogle Scholar
  21. 21.
    Ripin, Z., Soon, T.B., Abdullah, A., Samad, Z.: Development of a low-cost modular pole climbing robot. In: TENCON, Kuala Lumpur, Malaysia, vol. 1, pp. 196–200 (2000)Google Scholar
  22. 22.
    Tavakoli, M., Zakerzadeh, M.R., Vossoughi, G.R., Bagheri, S.: A hybrid Pole Climbing and Manipulating Robot with Minimum DOFs for Construction and Service Applications. Journal of Industrial Robot (March 2005)Google Scholar
  23. 23.
    Baghani, A., Ahmadabadi, M., Harati, A.: Kinematics Modelling of a Wheel-Based Pole Climbing Robot (UT-PCR). In: IEEE International Conference on Robotics and Automation, Barcelona (2005)Google Scholar
  24. 24.
    Tavakoli, M., Marques, L., de Almeida, A.: Pole climbing and manipulating robots: Assessment of different design categories. In: Proc. 37th Intl. Symp. on Robotics, Munich, Germany (2006)Google Scholar
  25. 25.
    Tavakoli, M., Zakerzadeh, M.R., Vossoughi, G.R., Bagheri, S., Salarieh, H.: A Novel Serial/Parallel Pole Climbing/Manipulating Robot: Design, Kinematic Analysis and Workspace Optimization with Genetic Algorithm. In: 21st International Symposium on Automation and Robotics in Construction, Jeju island, KoreaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mahmoud Tavakoli
    • 1
  • Lino Marques
    • 1
  • Anibal T. de Almeida
    • 1
  1. 1.Institute for Systems and RoboticsUniversity of CoimbraCoimbraPortugal

Personalised recommendations