Advertisement

Influence of Contact Modelling on the Macroscopic Plastic Response of Granular Soils Under Cyclic Loading

  • R. García-Rojo
  • S. McNamara
  • H. J. Herrmann
Part of the Lecture Notes in Mathematics book series (LNM, volume 1937)

An alternative to the use of continuous equations and constitutive models is the microscopic description of the material in terms of the grains themselves and the contacts (interactions) between them. This approach has been successfully applied in recent years to the study of many different problems in soil mechanics and granular physics. An open question is how realistic the microscopic model must be in order to accurately describe the macroscopic behavior observed in experiments. The objective of this contribution is to show the influence of different simple models of compacted granular soils on the overall elasto-plastic response of the system as a whole. We will focus our investigation on granular ratcheting, which is the persistent strain accumulation that a granular soil suffers under certain cyclic stress conditions. The direct influence of different models on the ratcheting response of the material will also help us to understand further this peculiar behavior of the system. The influence of particle shape will be also discussed.

Keywords

Molecular Dynamics Contact Force Discrete Element Method Tangential Force Contact Modelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Bagi, Mech. of Mat. 22, 165 (1996).CrossRefGoogle Scholar
  2. 2.
    P. A. Cundall, A. Drescher, and O. D. L. Strack, in IUTAM Conference on Deformation and Failure of Granular Materials (Delft, 1982), pp. 355–370.Google Scholar
  3. 3.
    B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1959).CrossRefMathSciNetGoogle Scholar
  4. 4.
    H. J. Herrmann and S. Luding, Continuum Mechanics and Thermodynamics 10, 189 (1998).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. A. Cundall, in Proc. Symp. Int. Rock Mech. (Balkema, Nancy, 1971), vol. 2.Google Scholar
  6. 6.
    J. J. Moreau, Ann. Inst. H. Poincaré Anal. Non Lin’eaire XXX, 1 (1989).Google Scholar
  7. 7.
    J. J. Moreau, in Powders & Grains 93 (Balkema, Rotterdam, 1993), p. 227.Google Scholar
  8. 8.
    F. Radjai, M. Jean, J. J. Moreau, and S. Roux, Phys. Rev. Lett. 77, 274 (1996a).CrossRefGoogle Scholar
  9. 9.
    F. Radjai, D. Wolf, S. Roux, M. Jean, and J. J. Moreau, in Friction, Arching and Contact Dynamics, edited by D. E. Wolf and P. Grassberger (World Scientific, Singapore, 1997).Google Scholar
  10. 10.
    S. Roux, in Physics of Dry Granular Media, edited by H. J. Herrmann, J.-P. Hovi, and S. Luding (Kluwer Academic Publishers, Dordrecht, 1998), p. 267.Google Scholar
  11. 11.
    J. H. Snoeijer, T. Vlugt, M. van Hecke, and W. van Saarloos, Phys. Rev. Lett. 92, 054302 (2004).CrossRefGoogle Scholar
  12. 12.
    F. Alonso-Marroquin and H. Herrmann, Phys. Rev. Lett. 92, 054301 (2004), cond-mat/0403065.CrossRefGoogle Scholar
  13. 13.
    R. García-Rojo and H. Herrmann, Granular matter 7, 109–118 (2005a), cond-mat 0404176.MATHCrossRefGoogle Scholar
  14. 14.
    R. G.-R. S. McNamara and H. J. Herrmann, Phys. Rev. E 72, 021304 (2005).CrossRefGoogle Scholar
  15. 15.
    S. Luding, in Physics of dry granular media - NATO ASI Series E350, edited by H. J. Herrmann, J.-P. Hovi, and S. Luding (Kluwer Academic Publishers, Dordrecht, 1998), p. 285.Google Scholar
  16. 16.
    R. García-Rojo and H. Herrmann, Phys. Rev. E 72, 041302 (2005b).CrossRefGoogle Scholar
  17. 17.
    R. D. Mindlin, J. of Appl. Mech. 16, 259 (1949).MATHMathSciNetGoogle Scholar
  18. 18.
    P. A. Cundall and O. D. L. Strack, Géotechnique 29, 47 (1979).CrossRefGoogle Scholar
  19. 19.
    R. Olivera and L. Rothenburg, in Powders and Grains 2005, edited by H. H. R. García-Rojo and S. McNamara (Taylor and Francis, 2005), pp. 1223–1227.Google Scholar
  20. 20.
    O. R. Walton, in Particulate two-phase flow, edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.Google Scholar
  21. 21.
    F. Radjai, L. Brendel, and S. Roux, Phys. Rev. E 54, 861 (1996b).CrossRefGoogle Scholar
  22. 22.
    S. McNamara and H. J. Herrmann (2004).Google Scholar
  23. 23.
    T. Unger, J. Kertész, and D. Wolf (2004), cond-mat/0403089.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • R. García-Rojo
    • 1
  • S. McNamara
    • 2
  • H. J. Herrmann
    • 3
  1. 1.Fisica Teorica, Facultad de FisicaUniversidad de SevillaSevillaSpain
  2. 2.ICPUniversity of StuttgartStuttgartGermany
  3. 3.Departamento de FisicaUniversidade Federal do CearàFortalezaBrazil

Personalised recommendations