Computing Homology Generators for Volumes Using Minimal Generalized Maps

  • Guillaume Damiand
  • Samuel Peltier
  • Laurent Fuchs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4958)


In this paper, we present an algorithm for computing efficiently homology generators of 3D subdivided orientable objects which can contain tunnels and cavities. Starting with an initial subdivision, represented with a generalized map where every cell is a topological ball, the number of cells is reduced using simplification operations (removal of cells), while preserving homology. We obtain a minimal representation which is homologous to the initial object. A set of homology generators is then directly deduced on the simplified 3D object.


topological features homology generators generalized maps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Damiand, G., Lienhardt, P.: Removal and contraction for n-dimensional generalized maps. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 408–419. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Damiand, G., Peltier, S., Fuchs, L.: Computing homology for surfaces with generalized maps: Application to 3d images. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 235–244. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002), MATHGoogle Scholar
  4. 4.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. In: Applied Mathematical Sciences, vol. 157, Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Kaczynski, T., Mrozek, M., Slusarek, M.: Homology computation by reduction of chain complexes. Computers & Math. Appl. 34(4), 59–70 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kartasheva, E., Gasilov, V.: Computer aided analysis of the polyhedrons topology. In: GraphiCon 1997, pp. 60–66 (1997)Google Scholar
  7. 7.
    Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal of Computational Geometry and Applications 4(3), 275–324 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lienhardt, P.: Topological models for boundary representation: A comparison with n-dimensional generalized maps. Commputer Aided Design 23(1) (1991)Google Scholar
  9. 9.
    Tamal, K.D., Sumanta, G.: Computing homology groups of simplicial complexes in R 3. Journal of the ACM 45(2), 266–287 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tarjan, R.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22(2), 215–225 (1975)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Guillaume Damiand
    • 1
  • Samuel Peltier
    • 2
  • Laurent Fuchs
    • 3
  1. 1.LaBRIUniversité Bordeaux 1, UMR CNRS 5800TalenceFrance
  2. 2.IFPRueil-MalmaisonFrance
  3. 3.SICUniversité de PoitiersFuturoscope ChasseneuilFrance

Personalised recommendations