Advertisement

Trade-Offs in the Performance of Workflows – Quantifying the Impact of Best Practices

  • M. H. Jansen-Vullers
  • P. A. M. Kleingeld
  • M. W. N. C. Loosschilder
  • M. Netjes
  • H. A. Reijers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4928)

Abstract

Business process redesign is one of the most powerful ways to boost business performance and to improve customer satisfaction [14]. A possible approach to business process redesign is using redesign best practices. A previous study identified a set of 29 different redesign best practices [18]. However, little is known about the exact impact of these redesign best practices on workflow performance.

This study proposes an approach that can be used to quantify the impact of a business process redesign project on all dimensions of workflow performance. The approach consists of a large set of performance measures and a simulation toolkit. It supports the quantification of the impact of the implementation of redesign best practices, in order to determine what best practice or combination of best practices leads to the most favorable effect in a specific business process.

The approach is developed based on a quantification project for the parallel best practice [8] and is validated with two other quantification projects, namely for the knockout and triage best practices.

Keywords

Business Process Redesign Business Process Simulation Best Practices Performance Measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P.: Reengineering Knock-out Processes. Decision Support Systems 30(4), 451–468 (2001)CrossRefGoogle Scholar
  2. 2.
    Adams, C., Neely, A.: Prism Reform. Financial Management 5, 28–31 (2002)Google Scholar
  3. 3.
    Brand, N., van der Kolk, H.: Workflow Analysis and Design. Kluwer Bedrijfswetenschappen (in Dutch) (1995)Google Scholar
  4. 4.
    Brignall, T.J., Fitzgerald, L., Johnston, R., Silvestro, R.: Performance Measurement in Service Businesses. Management Accounting 69(10), 34–36 (1991)Google Scholar
  5. 5.
    Cross, K.F., Lynch, R.L.: The ”SMART” Way to Define and Sustain Success. National Productivity Review 8(1), 23–33 (1988/1989)CrossRefGoogle Scholar
  6. 6.
    Goverde, R.H.J.J.M., Reijers, H.A.: Resource Management: a Clear-Headed Approach to Ensure Efficiency. Workflow Magazine 4(6), 26–28 (1998)Google Scholar
  7. 7.
    Hackman, J.R., Oldham, G.R.: Motivation through the design of work: Test of a theory. Organizational Behavior and Human Performance 16(2), 250–279 (1976)CrossRefGoogle Scholar
  8. 8.
    Jansen-Vullers, M.H., Kleingeld, P.A.M., Loosschilder, M.W.N.C., Netjes, M.: Sequential or in Parallel – Measuring the impact of a Business Process Redesign Best Practice (submitted for publication, 2007)Google Scholar
  9. 9.
    Kaplan, R.S., Norton, D.P.: The Balanced Scorecard: Measures that Drive Performance. Harvard Business Review 70, 71–79 (1992)Google Scholar
  10. 10.
    Keegan, D.P., Eiler, R.G., Jones, C.R.: Are your Performance Measures obsolete? Management Accounting 70(12), 45–50 (1989)Google Scholar
  11. 11.
    Kulkarni, V.G.: Modeling, Analysis, Design, and Control of Stochastic Systems. Springer, New York (1999)zbMATHGoogle Scholar
  12. 12.
    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, McGraw-Hill Book Co., Singapore (2000)Google Scholar
  13. 13.
    Loosschilder, M.W.N.C., Jansen-Vullers, M.H.: Quantification of the implementation of the parallel, knockout and triage heuristic, BETA Working papers 203, 204 and 205, Eindhoven University of Technology, The Netherlands (2007)Google Scholar
  14. 14.
    Limam Mansar, S., Reijers, H.A.: Best Practices in Business Process Redesign: Validation of a Redesign Framework. Computers in Industry 56, 457–471 (2005)CrossRefGoogle Scholar
  15. 15.
    Mehta, A.: Smart modeling: Basic methodology and advanced tools. In: Joines, J.A., Barton, R.R., Kang, K., Fishwick, A. (eds.) Proceedings of the winter simulation conference, pp. 241–245 (2000)Google Scholar
  16. 16.
    Miller Jr., R.G.: Simultaneous Statistical Inference. Springer, New York (1981)zbMATHGoogle Scholar
  17. 17.
    Netjes, M., van der Aalst, W.M.P., Reijers, H.A.: Analysis of Resource Constrained Processes with Colored Petri Nets. In: Jensen, K. (ed.) Proc. of the 6th Workshop on Practical Use of Coloured Petri Nets and the CPN Tools (2005)Google Scholar
  18. 18.
    Reijers, H.: Design and Control of Workflow Processes: Business Process Management for the Service Industry. Springer, Berlin (2003)zbMATHGoogle Scholar
  19. 19.
    Reijers, H.A., Limam Mansar, S.: Best Practices in Business Process Redesign: an Overview and Qualitative Evaluation of Successful Redesign Heuristics. Omega, The International Journal of Management Science 33, 283–306 (2005)CrossRefGoogle Scholar
  20. 20.
    Zapf, M., Heinzl, A.: Evaluation of Generic Process Design Patterns: An Experimental Study. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 83–95. Springer, Berlin (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. H. Jansen-Vullers
    • 1
  • P. A. M. Kleingeld
    • 1
  • M. W. N. C. Loosschilder
    • 1
  • M. Netjes
    • 1
  • H. A. Reijers
    • 1
  1. 1.Department of Technology ManagementEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations