Temporal Soliton “Molecules” in Mode-Locked Lasers: Collisions, Pulsations, and Vibrations

Chapter

Abstract

A few years after the discovery of the stable dissipative soliton pairs in passively mode-locked lasers, a large variety of multi-soliton complexes were studied in both experiments and numerical simulations, revealing interesting new behaviors. This chapter focuses on the following three subjects: collisions between dissipative solitons, pulsations of dissipative solitons, and vibrations of soliton pairs. Different outcomes of collisions between a soliton pair and a soliton singlet are discussed, showing possible experimental control in the formation or dissociation of ‘soliton molecules’. Long-period pulsations of single and multiple dissipative solitons are presented as limit cycles and observed experimentally. Finally, one possible manifestation of long-period pulsation for a soliton pair results in a vibrational motion. All these behaviors that enrich the life of multi-soliton complexes make them akin to molecules. However, the analogy has clear limitations, since these ‘soliton molecules’ are inherently strongly dissipative and require a sustained energy supply from the gain medium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams, (Chapman 8 Hall, London, 1997).Google Scholar
  2. 2.
    Akhmediev, N.N., Ankiewicz A. (eds.). Dissipative Solitons. Lect. Notes Phys. Springer, Berlin (2005)Google Scholar
  3. 3.
    Nikolay N. Rosanov. Spatial Hysteresis and Optical Patterns, (Springer, Berlin, 2002).Google Scholar
  4. 4.
    N. Akhmediev, A. Ankiewicz, and J.M. Soto-Crespo, Phys. Rev. Lett. 79, 4047 (1997).MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Ph. Grelu, F. Belhache, F. Gutty, and J.M. Soto-Crespo, Opt. Lett. 27, 966 (2002).CrossRefADSGoogle Scholar
  6. 6.
    D.Y. Tang, W.S. Man, H.Y. Tam, and P.D. Drummond, Phys. Rev. A, 64, 033814 (2001).CrossRefADSGoogle Scholar
  7. 7.
    N.H. Seong and D.Y. Kim, Opt. Lett. 27, 1321 (2002).CrossRefADSGoogle Scholar
  8. 8.
    A. Hideur, B. Ortaç, T. Chartier, M. Brunel, H. Leblond, and F. Sanchez, Opt. Commun. 225, 71 (2003).CrossRefADSGoogle Scholar
  9. 9.
    Ph. Grelu and J.M. Soto-Crespo, J. Opt. B: Quantum Semiclass. Opt. 6, S271 (2004).CrossRefADSGoogle Scholar
  10. 10.
    M. Olivier, V. Roy, M. Piché, and F. Babin, Opt. Lett. 29, 1461 (2004).CrossRefADSGoogle Scholar
  11. 11.
    B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. Ilday, Opt. Express 14, 6075 (2006).CrossRefADSGoogle Scholar
  12. 12.
    Ph. Grelu, J. Béal, and J.M. Soto-Crespo, Opt. Express 11, 2238 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    J.M. Soto-Crespo and N. Akhmediev, Phys. Rev. E 66, 066610 (2002).CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    V.J. Matsas, T.P. Newson, D.J. Richardson, and D.N. Payne, Electron. Lett. 28, 1391 (1992).CrossRefGoogle Scholar
  15. 15.
    B.C. Barnett, et al., Opt. Lett. 20, 471 (1995).CrossRefADSGoogle Scholar
  16. 16.
    S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S.Y. Set, Opt. Lett. 29, 1581 (2004).CrossRefADSGoogle Scholar
  17. 17.
    D.E. Spence, J.M. Evans, W.E. Sleat, and W. Sibbett, Opt. Lett. 16, 1762 (1991).CrossRefADSGoogle Scholar
  18. 18.
    M.J. Lederer, B. Luther-Davies, H.H. Tan, C. Jagadish, N.N. Akhmediev, and J.M. Soto-Crespo, J. Opt. Soc. Am. B 16, 895 (1999).CrossRefADSGoogle Scholar
  19. 19.
    S.T. Cundiff, J.M. Soto-Crespo, and N. Akhmediev, Phys. Rev. Lett. 88, 073903 (2002).CrossRefADSGoogle Scholar
  20. 20.
    Ch. Spielmann, P.F. Curley, T. Brabec, and F. Krausz, IEEE J. Quantum Electron. 30, 1100 (1994).CrossRefADSGoogle Scholar
  21. 21.
    H. Kitano and S. Kinoshita, Opt. Commun. 157, 128 (1998).CrossRefADSGoogle Scholar
  22. 22.
    B. Chassagne, G. Jonusauskas, J. Oberlé, and C. Rulliére, Opt. Commun. 150, 355 (1998).CrossRefADSGoogle Scholar
  23. 23.
    F. Salin, P. Grangier, G. Roger, and A. Brun, Phys. Rev. Lett. 56, 1132 (1986).CrossRefADSGoogle Scholar
  24. 24.
    T. Tsang, Opt. Lett. 18, 293-295 (1993).CrossRefADSGoogle Scholar
  25. 25.
    Soto-Crespo, J.M.,and Grelu, Ph.: Temporal multi-soliton complexes generated by passively mode-locked lasers: in: Akhmediev, N.N., Ankiewicz, A. (eds.): Dissipative Solitons. Lect. Notes Phys. Springer, Berlin (2005)Google Scholar
  26. 26.
    N. Akhmediev, J.M. Soto-Crespo, and G. Town, Phys. Rev. E 63 056602 (2001).CrossRefADSGoogle Scholar
  27. 27.
    V.V. Afanasjev and N. Akhmediev, Phys. Rev. E 53, 6471 (1996).CrossRefADSGoogle Scholar
  28. 28.
    K. Tamura, E.P. Ippen, H.A. Haus, and L.E. Nelson, Opt. Lett. 18, 1080 (1993).CrossRefADSGoogle Scholar
  29. 29.
    K. Tamura and M. Nakazawa, Optimizing power extraction in stretched-pulse fiber ring lasers, Appl. Phys. Lett. 67, 3691 (1995).CrossRefADSGoogle Scholar
  30. 30.
    M. Salhi, H. Leblond, and F. Sanchez Phys. Rev. A 68, 033815 (2003).CrossRefADSGoogle Scholar
  31. 31.
    A. Komarov, H. Leblond, and F. Sanchez Phys. Rev. E 72, 025604 (2005).CrossRefADSGoogle Scholar
  32. 32.
    A. Komarov, H. Leblond, and F. Sanchez Phys. Rev. A 72, 063811 (2005).CrossRefADSGoogle Scholar
  33. 33.
    F. Gutty, Ph. Grelu, N. Huot, G. Vienne, and G. Millot, Electron. Lett. 37, 745 (2001).CrossRefGoogle Scholar
  34. 34.
    A.K. Komarov and K.P. Komarov, Opt. Commun. 183, 265–270 (2000).CrossRefADSGoogle Scholar
  35. 35.
    S. Namiki, E.P. Ippen, H.A. Haus, and C.X. Yu, J. Opt. Soc. Am. B 14, 2099 (1997).ADSGoogle Scholar
  36. 36.
    D.Y. Tang, W.S. Man, and H.Y. Tam, Opt. Commun. 165, 189 (1999).CrossRefADSGoogle Scholar
  37. 37.
    M. Olivier, V. Roy, and M. Piché, Opt. Express 14, 9728 (2006).CrossRefADSGoogle Scholar
  38. 38.
    Ph. Grelu and N. Akhmediev, Opt. Express 12, 3184 (2004).CrossRefADSGoogle Scholar
  39. 39.
    N. Akhmediev, J.M. Soto-Crespo, M. Grapinet, and Ph. Grelu, Opt. Fib. Technol. 11, 209 (2005).CrossRefADSGoogle Scholar
  40. 40.
    H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, J. Opt. A 8, 319 (2006).ADSGoogle Scholar
  41. 41.
    V. Roy, M. Olivier, and M. Piché, Opt. Express 13, 9217 (2005).CrossRefADSGoogle Scholar
  42. 42.
    H. Haus, J. Appl. Phys. 46, 3049 (1975).CrossRefADSGoogle Scholar
  43. 43.
    P.-S. Jian, W.E. Torruellas, M. Haelterman, S. Trillo, U. Peschel, and F. Lederer, Opt. Lett. 24, 400 (1999).CrossRefADSGoogle Scholar
  44. 44.
    J.M. Soto-Crespo, N.N. Akhmediev, and A. Ankiewicz, Phys. Rev. Lett. 85, 2937 (2000).CrossRefADSGoogle Scholar
  45. 45.
    J. Satsuma and N. Yajima, Progr. Theor. Phys. Suppl. 55, 284–306 (1974).CrossRefMathSciNetADSGoogle Scholar
  46. 46.
    K. Tamura, C.R. Doerr, H.A. Haus, and E.P. Ippen, IEEE Phot. Technol. Lett. 6, 697 (1994).CrossRefADSGoogle Scholar
  47. 47.
    F. Ilday, J. Buckley and F. Wise, Proceedings of the Nonlinear Guided Waves Conference (OSA, Washington, DC 2004), Toronto, March 28–31, (2004), Paper MD9.Google Scholar
  48. 48.
    N. Akhmediev, J.M. Soto-Crespo, M. Grapinet, and Ph. Grelu, J. Nonlin. Opt. Phys. Mat. 14, 177 (2005).CrossRefGoogle Scholar
  49. 49.
    C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46–56 (1999).CrossRefADSGoogle Scholar
  50. 50.
    J.M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev, Phys. Rev. E, 70, 066612 (2004).CrossRefADSGoogle Scholar
  51. 51.
    M. Grapinet and Ph. Grelu, Opt. Lett. 31, 2115 (2006).CrossRefADSGoogle Scholar
  52. 52.
    N.N. Akhmediev, A. Ankiewicz, and J.M. Soto-Crespo, J. Opt. Soc. Am. B 15, 515 (1998).CrossRefMathSciNetADSGoogle Scholar
  53. 53.
    J.M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, Phys. Rev. E 75, 016613 (2007).Google Scholar
  54. 54.
    N.Akhmediev, J.M. Soto-Crespo, and Ph. Grelu, Phys. Lett. A, 364, 413-416 (2007).Google Scholar
  55. 55.
    J.M. Soto-Crespo, N. Akhmediev, and Ph. Grelu, Phys. Rev. E 74, 046612 (2006).CrossRefADSGoogle Scholar
  56. 56.
    Ph. Grelu, F. Belhache, F. Gutty, and J.M. Soto-Crespo, J. Opt. Soc. Am. B 20, 863 (2003).ADSGoogle Scholar
  57. 57.
    J.M. Soto-Crespo, N. Akhmediev, Ph. Grelu, and F. Belhache, Opt. Lett. 28, 1757 (2003).CrossRefADSGoogle Scholar
  58. 58.
    L.C. Crasovan, Y.V. Kartashov, D. Mihalache, Ll.Torner, Y.S. Kivshar, and V.M. Pérez-García, Phys. Rev. E 67, 046610 (2003).CrossRefADSGoogle Scholar
  59. 59.
    M. Stratmann, T. Pagel, and F. Mitschke, Phys. Rev. Lett. 95, 143902 (2005).CrossRefADSGoogle Scholar
  60. 60.
    C. Schenk, P. Schütz, M. Bode, and H.-G. Purwins, Phys. Rev. E 57, 6480–6486 (1998).CrossRefADSGoogle Scholar
  61. 61.
    M. Haelterman and A.P. Sheppard, Phys. Rev. E 49, 3376–3381 (1994).CrossRefADSMathSciNetGoogle Scholar
  62. 62.
    M. Mitchell, M. Segev and D. Christodoulides, Phys. Rev. Lett. 80, 4657 (1998).MATHCrossRefADSGoogle Scholar
  63. 63.
    C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, Ph. Emplit, and M. Haelterman, Phys. Rev. Lett. 89, 083901 (2002).CrossRefADSGoogle Scholar
  64. 64.
    K.L. Hall, J.D. Moores, K.A. Rauschenbach, W.S. Wong, E.P. Ippen, and H.A. Haus, IEEE Phot. Technol. Lett. 7, 1093–1095 (1995).CrossRefADSGoogle Scholar
  65. 65.
    A. Schwache and F. Mitschke, Phys. Rev. E 55, 7720 (1997).CrossRefADSGoogle Scholar
  66. 66.
    Ph. Grelu, J.M. Soto-Crespo, and N. Akhmediev, Opt. Express 13, 9352 (2005).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Institut Carnot de Bourgogne, UMR 5209 CNRS, Université de BourgogneF-21078 Dijon CedexFrance
  2. 2.Instituto de óptica, C.S.I.C28006 MadridSpain

Personalised recommendations