Handling Parameterized Systems with Non-atomic Global Conditions

  • Parosh Aziz Abdulla
  • Noomene Ben Henda
  • Giorgio Delzanno
  • Ahmed Rezine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4905)


We consider verification of safety properties for parameterized systems with linear topologies. A process in the system is an extended automaton, where the transitions are guarded by both local and global conditions. The global conditions are non-atomic, i.e., a process allows arbitrary interleavings with other transitions while checking the states of all (or some) of the other processes. We translate the problem into model checking of infinite transition systems where each configuration is a labeled finite graph. We derive an over-approximation of the induced transition system, which leads to a symbolic scheme for analyzing safety properties. We have implemented a prototype and run it on several nontrivial case studies, namely non-atomic versions of Burn’s protocol, Dijkstra’s protocol, the Bakery algorithm, Lamport’s distributed mutual exclusion protocol, and a two-phase commit protocol used for handling transactions in distributed systems. As far as we know, these protocols have not previously been verified in a fully automated framework.


Parameterized System Local Variable Model Check Transition System Global Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kesten, Y., et al.: Symbolic model checking with rich assertional languages. TCS 256, 93–112 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abdulla, P., et al.: Regular Model Checking Made Simple and Efficient. In: Brim, L., et al. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 116–130. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Boigelot, B., Legay, A., Wolper, P.: Iterating Transducers in the Large. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Clarke, E., Talupur, M., Veith, H.: Environment Abstraction for Parameterized Verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Abdulla, P., et al.: Regular Model Checking Without Transducers (On Efficient Verification of Parameterized Systems). In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Abdulla, P., Delzanno, G., Rezine, A.: Parameterized Verification of Infinite-State Processes with Global Conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Abdulla, P., et al.: Handling parameterized systems with non-atomic global conditions. Technical Report 2007-030, it (2007)Google Scholar
  8. 8.
    Revesz, P.: A closed form evaluation for datalog queries with integer (gap)-order constraints. TCS 116, 117–149 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lamport, L.: Time, clocks and the ordering of events in a distributed system. CACM 21(7), 558–565 (1978)zbMATHGoogle Scholar
  10. 10.
    Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann, San Francisco (1992)Google Scholar
  11. 11.
    Delzanno, G.: Automatic verification of cache coherence protocols. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Pnueli, A., et al.: Parameterized Verification with Automatically Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Lahiri, S.K., Bryant, R.E.: Indexed Predicate Discovery for Unbounded System Verification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Manna, Z., et al.: STEP: the Stanford Temporal Prover. Draft Manuscript (1994)Google Scholar
  15. 15.
    Chkliaev, D., Hooman, J., van der Stok, P.: Mechanical verification of transaction processing systems. In: ICFEM 2000 (2000)Google Scholar
  16. 16.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proc. LICS 1986, pp. 332–344 (1986)Google Scholar
  17. 17.
    Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock freedom and safety properties. FMSD 2(2), 149–164 (1993)zbMATHCrossRefGoogle Scholar
  18. 18.
    Abdulla, P., et al.: Algorithmic analysis of programs with well quasi-ordered domains. ICom 160, 109–127 (2000)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  • Noomene Ben Henda
    • 1
  • Giorgio Delzanno
    • 2
  • Ahmed Rezine
    • 1
  1. 1.Uppsala UniversitySweden
  2. 2.Università di GenovaItaly

Personalised recommendations