The paper presents a new deductive rule for verifying response properties under the assumption of compassion (strong fairness) requirements. It improves on previous rules in that the premises of the new rule are all first order. We prove that the rule is sound, and present a constructive completeness proof for the case of finite-state systems. For the general case, we present a sketch of a relative completeness proof. We report about the implementation of the rule in PVS and illustrate its application on some simple but non-trivial examples.


Model Check Ranking Function Response Property Linear Temporal Logic Liveness Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balaban, I., Pnueli, A., Zuck, L.D.: Modular ranking abstraction. Int. J. Found. Comput. Sci. 18(1), 5–44 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Browne, I., Manna, Z., Sipma, H.: Generalized verification diagrams. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 484–498. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  5. 5.
    Colon, M., Sipma, H.: Practical methods for proving program termination. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that programs eventually do something good. In: Proc. 34th ACM Symp. Princ. of Prog. Lang., pp. 265–276 (2007)Google Scholar
  7. 7.
    Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Dams, D., Gerth, R., Grumberg, O.: A heuristic for the automatic generation of ranking functions. In: Gopalakrishnan, G. (ed.) Workshop on Advances in Verification, pp. 1–8 (2000)Google Scholar
  9. 9.
    Kesten, Y., Piterman, N., Pnueli, A.: Bridging the gap between fair simulation and trace inclusion. Inf. and Comp. 200(1), 35–61 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kesten, Y., Pnueli, A.: Verification by finitary abstraction. Information and Computation, a special issue on Compositionality 163(1), 203–243 (2000)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Kesten, Y., Pnueli, A.: A Compositional Approach to CTL* Verification. Theor. Comp. Sci. 331(2–3), 397–428 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kesten, Y., et al.: Network invariants in action. In: Brim, L., et al. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 101–115. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Lamport, L.: Proving the correctness of multiprocess programs. Trans. Soft. Eng. 3, 125–143 (1977)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Manna, Z., et al.: STeP: The Stanford Temporal Prover. Technical Report STAN-CS-TR-94-1518, Dept. of Comp. Sci., Stanford University, Stanford, California (1994)Google Scholar
  15. 15.
    Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comp. Sci. 83(1), 97–130 (1991)zbMATHCrossRefGoogle Scholar
  16. 16.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New York (1995)Google Scholar
  17. 17.
    Manna, Z., Pnueli, A.: Temporal verification of reactive systems: Progress. Draft manuscript (1996),
  18. 18.
    Owre, S., et al.: PVS System Guide. Menlo Park, CA (2001)Google Scholar
  19. 19.
    Pnueli, A., Arons, T.: TLPVS: A PVS-Based LTL Verification System. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 598–625. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Pnueli, A., Podelski, A., Rybalchenko, A.: Separating fairness and well-foundedness for the analysis of fair discrete systems. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 124–139. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Pnueli, A., Sa’ar, Y.: All you need is compassion. Research Report, Dept. of Computer Science, New York University Technical Report (October 2007),
  22. 22.
    Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS 2004, pp. 32–41 (2004)Google Scholar
  23. 23.
    Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termination. In: POPL 2005, pp. 132–144 (2005)Google Scholar
  24. 24.
    Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  25. 25.
    Sipma, H.B., Uribe, T.E., Manna, Z.: Deductive model checking. Formal Methods in System Design 15(1), 49–74 (1999)CrossRefGoogle Scholar
  26. 26.
    Stomp, F.A., de Roever, W.-P., Gerth, R.T.: The μ-calculus as an assertion language for fairness arguments. Inf. and Comp. 82, 278–322 (1989)zbMATHCrossRefGoogle Scholar
  27. 27.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS 1986, pp. 332–344 (1986)Google Scholar
  28. 28.
    Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with network invariants. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 68–80. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Amir Pnueli
    • 1
    • 2
  • Yaniv Sa’ar
    • 2
  1. 1.New York UniversityNew York 
  2. 2.Weizmann Institute of Science 

Personalised recommendations