In this paper we analyze the problem of transforming partitions in order to satisfy completeness in the standard abstract interpretation framework. In order to obtain this, we exploit the relation existing between completeness and the Paige-Tarjan notion of stability, already detected in the particular context of refining partitions for completeness. Here we extend this relation in order to cope not only with the existing notions of completeness, but also with the simplification of domains for completeness (the so called core). Then we show that completeness lies, under the stability form, in two fields of computer science security: abstract non-interference and opacity.


Equivalence Relation Closure Operator Abstract Interpretation Public Output Abstract Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banerjee, A., Giacobazzi, R., Mastroeni, I.: What you lose is what you leak: Information leakage in declassification policies. In: Proc. of MFPS 2007. ENTCS, vol. 1514, Elsevier, Amsterdam (2007)Google Scholar
  2. 2.
    Bryans, J.W., et al.: Opacity generalized to transition systems. In: Dimitrakos, T., et al. (eds.) FAST 2005. LNCS, vol. 3866, pp. 81–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Clarke, E.M., et al.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Collberg, C., Thomborson, C., Low, D.: Manufactoring cheap, resilient, and stealthy opaque constructs. In: Proc. of POPL 1998, pp. 184–196. ACM Press, New York (1998)CrossRefGoogle Scholar
  5. 5.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. of POPL 1977, pp. 238–252. ACM Press, New York (1977)Google Scholar
  6. 6.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. of POPL 1979, pp. 269–282. ACM Press, New York (1979)Google Scholar
  7. 7.
    Dalla Preda, M., et al.: Opaque predicates detection by abstract interpretation. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 81–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-interference by abstract interpretation. In: Proc. of POPL 2004, pp. 186–197. ACM Press, New York (2004)CrossRefGoogle Scholar
  9. 9.
    Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples and refinements in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Giacobazzi, R., Ranzato, F.: Refining and compressing abstract domains. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 771–781. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete. J. of the ACM 47(2), 361–416 (2000)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hunt, S., Mastroeni, I.: The PER model of abstract non-interference. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 171–185. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  14. 14.
    Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on Computing 16(6), 977–982 (1987)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Ranzato, F., Tapparo, F.: An abstract interpretation-based refinement algorithm for strong preservation. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 140–156. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Ranzato, F., Tapparo, F.: Generalized strong preservation by abstract interpretation. Journal of Logic and Computation 17(1), 157–197 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sabelfeld, A., Sands, D.: A PER model of secure information flow in sequential programs. Higher-Order and Symbolic Computation 14(1), 59–91 (2001)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Isabella Mastroeni
    • 1
  1. 1.Dipartimento di InformaticaUniversità di VeronaVeronaItaly

Personalised recommendations