Advertisement

Modeling and Tracking Line-Constrained Mechanical Systems

  • B. Rosenhahn
  • T. Brox
  • D. Cremers
  • H. -P. Seidel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4931)

Abstract

This work deals with modeling and tracking of mechanical systems which are given as kinematic chains with restricted degrees of freedom. Such systems may involve many joints, but due to additional restrictions or mechanical properties the joints depend on each other. So-called closed-chain or parallel manipulators are examples for kinematic chains with additional constraints. Though the degrees of freedom are limited, the complexity of the dynamic equations increases rapidly when studied analytically. In this work, we suggest to avoid this kind of analytic integration of interconnection constraints and instead to model them numerically via soft constraints.

Keywords

Joint Angle Rigid Body Motion Kinematic Chain Soft Constraint Point Correspondence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bicchi, A., Prattichizzo, D.: On some structural properties of general manipulation systems. In: Astolfi, A., et al. (eds.) Modelling and Control of Mechanichal Systems, pp. 187–202. Imperial College Press, London, U.K (1997)Google Scholar
  2. 2.
    Blaschke, W.: Kinematik und Quaternionen, Mathematische Monographien, Deutscher Verlag der Wissenschaften, vol. 4 (1960)Google Scholar
  3. 3.
    Bregler, C., Malik, J.: Tracking people with twists and exponential maps. In: Proc. Computer Vision and Pattern Recognition, Santa Barbara, California, pp. 8–15 (1998)Google Scholar
  4. 4.
    Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinetics. International Journal of Computer Vision 56(3), 179–194 (2004)CrossRefGoogle Scholar
  5. 5.
    Carranza, J., et al.: Free-viewpoint video of human actors. In: Proc. SIGGRAPH 2003, pp. 569–577 (2003)Google Scholar
  6. 6.
    Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cheng, H., Yiu, Y.: Dynamics and control of redundantly actuated parallel manipulators. Trans. on Mechatronics 8(4), 483–491 (2003)CrossRefGoogle Scholar
  8. 8.
    Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied Mechanics 22, 215–221 (1955)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Fua, P., Plänkers, R., Thalmann, D.: Tracking and modeling people in video sequences. Computer Vision and Image Understanding 81(3), 285–302 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Gao, X., Qu, Z.: On the robust control of two manipulators holding a rigid object. Intelligent and Robotic Systems 8, 107–119 (1992)CrossRefGoogle Scholar
  11. 11.
    Gavrila, D.M.: The visual analysis of human movement: A survey. Computer Vision and Image Understanding 73(1), 82–92 (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kim, D., Kang, J., Lee, K.: Robust tracking control design for a 6 dof parallel manipulator. Journal of Robotics Systems 17(10), 527–547 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Mikic, I., et al.: Human body model acquisition and tracking using voxel data. International Journal of Computer Vision 53(3), 199–223 (2003)CrossRefGoogle Scholar
  14. 14.
    Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), 90–126 (2006)CrossRefGoogle Scholar
  15. 15.
    Moeslund, T.B., Granum, E.: A survey of computer vision based human motion capture. Computer Vision and Image Understanding 81(3), 231–268 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Murray, R.M., Li, Z., Sastry, S.S.: Mathematical Introduction to Robotic Manipulation. CRC Press, Baton Rouge (1994)Google Scholar
  17. 17.
    Ostrowski, J.: Computing reduced equations for robotic systems with constraints and symmetries. Trans. on Robotics and Automation 15(1), 111–123 (1999)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Rosenhahn, B.: Pose estimation revisited. Technical Report TR-0308, PhD-thesis, Institute of Computer Science, University of Kiel, Germany (October 2003), http://www.ks.informatik.uni-kiel.de
  19. 19.
    Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. International Journal of Computer Vision 73(3), 243–262 (2007)CrossRefGoogle Scholar
  20. 20.
    Zweiri, Y., Senevirante, L., Althoefer, K.: Modelling of closed-chain manipulators on an excavator vehicle. Mathematical and Computer Modeling of Dynamical Systems 12(4), 329–345 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • B. Rosenhahn
    • 1
  • T. Brox
    • 2
  • D. Cremers
    • 3
  • H. -P. Seidel
    • 1
  1. 1.Max Planck Institute for Computer ScienceSaarbrückenGermany
  2. 2.Department of Computer ScienceUniversity of DresdenDresdenGermany
  3. 3.Computer Vision GoupUniversity of BonnBonnGermany

Personalised recommendations