Direct Pose Estimation with a Monocular Camera

  • Darius Burschka
  • Elmar Mair
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4931)


We present a direct method to calculate a 6DoF pose change of a monocular camera for mobile navigation. The calculated pose is estimated up to a constant unknown scale parameter that is kept constant over the entire reconstruction process. This method allows a direct calculation of the metric position and rotation without any necessity to fuse the information in a probabilistic approach over longer frame sequence as it is the case in most currently used VSLAM approaches. The algorithm provides two novel aspects to the field of monocular navigation. It allows a direct pose estimation without any a-priori knowledge about the world directly from any two images and it provides a quality measure for the estimated motion parameters that allows to fuse the resulting information in Kalman Filters.

We present the mathematical formulation of the approach together with experimental validation on real scene images.


Singular Value Decomposition Motion Parameter Rotation Matrix Camera Image Epipolar Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pat. Anal. Machine Intell. 9, 698–700 (1987)Google Scholar
  2. 2.
    Fischler, M., Bolles, R.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Davison, A.J.: Real-Time Simultaneous Localisation and Mapping with a Single Camera. In: Proc. Internation Conference on Computer Vision, vol. 2, pp. 1403–1412 (2003)Google Scholar
  4. 4.
    Horn, B.K.P.: Closed-form solution of absolute orientation using orthonomal matrices. J. Opt. Soc. Amer. 5, 1127–1135 (1988)MathSciNetGoogle Scholar
  5. 5.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternion. J. Opt. Soc. Amer. A-4, 629–642 (1987)CrossRefGoogle Scholar
  6. 6.
    Horn, B.K.P.: Robot Vision. MIT Press, Cambridge (1986)Google Scholar
  7. 7.
    Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(10), 133–135 (1981)CrossRefGoogle Scholar
  8. 8.
    Nister, D.: A Minimal Solution to the Generalised 3-Point Pose Problem. In: CVPR 2004 (2004)Google Scholar
  9. 9.
    Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)MATHCrossRefGoogle Scholar
  10. 10.
    Walker, M.W., Shao, L., Volz, R.A.: Estimating 3-D location parameters using dual number quaternions. CVGIP: Image Understanding 54(3), 358–367 (1991)MATHCrossRefGoogle Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, ambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Darius Burschka
    • 1
  • Elmar Mair
    • 1
  1. 1.Department of InformaticsTechnische Universität MünchenGermany

Personalised recommendations