Advertisement

Dynamic Multiresolution Optical Flow Computation

  • Naoya Ohnishi
  • Yusuke Kameda
  • Atsushi Imiya
  • Leo Dorst
  • Reinhard Klette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4931)

Abstract

This paper introduces a new algorithm for computing multi-resolution optical flow, and compares this new hierarchical method with the traditional combination of the Lucas-Kanade method with a pyramid transform. The paper shows that the new method promises convergent optical flow computation. Aiming at accurate and stable computation of optical flow, the new method propagates results of computations from low resolution images to those of higher resolution. The resolution of images increases this way for the sequence of images used in those calculations. The given input sequence of images defines the maximum of possible resolution.

Keywords

Image Sequence Optical Flow Generate Image Pair Gaussian Pyramid Optical Flow Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vision 2, 283–310 (1989)CrossRefGoogle Scholar
  2. 2.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vision 12, 43–77 (1995)CrossRefGoogle Scholar
  3. 3.
    Bouguet, J.: Pyramidal implementation of the Lucas-Kanade feature tracker. Intel Corporation, Microprocessor Research Labs, OpenCV Documents (1999)Google Scholar
  4. 4.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  5. 5.
    Handschack, P., Klette, R.: Quantitative comparisons of differential methods for measuring image velocity. In: Proc. Aspects of Visual Form Processing, Capri, pp. 241–250 (1994)Google Scholar
  6. 6.
    Hwang, S.-H., Lee, U.K.: A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint. Pattern Recognition 26, 939–952 (1993)CrossRefGoogle Scholar
  7. 7.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Imaging Understanding Workshop, pp. 121–130 (1981)Google Scholar
  8. 8.
    Mahzoun, M.R., et al.: A scaled multigrid optical flow algorithm based on the least RMS error between real and estimated second images. Pattern Recognition 32, 657–670 (1999)CrossRefGoogle Scholar
  9. 9.
    Nagel, H.-H.: On the estimation of optical flow: Relations between different approaches and some new results. Artificial Intelligence 33, 299–324 (1987)CrossRefGoogle Scholar
  10. 10.
    Ruhnau, P., et al.: Variational optical flow estimation for particle image velocimetry. Experiments in Fluids 38, 21–32 (2005)CrossRefGoogle Scholar
  11. 11.
    Weber, J., Malik, J.: Robust computation of optical flow in a multi-scale differential framework. Int. J. Comput. Vision 14, 67–81 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Naoya Ohnishi
    • 1
  • Yusuke Kameda
    • 1
  • Atsushi Imiya
    • 1
  • Leo Dorst
    • 2
  • Reinhard Klette
    • 3
  1. 1.Chiba UniversityJapan
  2. 2.The University of AmsterdamThe Netherlands
  3. 3.The University of AucklandNew Zealand

Personalised recommendations