Trusting Politicians’ Words (for Persuasive NLP)

  • Marco Guerini
  • Carlo Strapparava
  • Oliviero Stock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4919)


This paper presents resources and lexical strategies for persuasive natural language processing. After the introduction of a specifically tagged corpus of political speeches, some forms of affective language processing in persuasive communication and prospects for application scenarios are provided. In particular Valentino, a prototype for valence shifting of existing texts, is described.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perelman, C., Olbrechts-Tyteca, L.: The new Rhetoric: a treatise on Argumentation. Notre Dame Press (1969)Google Scholar
  2. 2.
    Reed, C., Grasso, F.: Recent advances in computational models of argument. International Journal of Intelligent Systems 22(1), 1–15 (2007)MATHCrossRefGoogle Scholar
  3. 3.
    Miceli, M., deRosis, F., Poggi, I.: Emotional and non-emotional persuasion. Applied Artificial Intelligence 20 (2006)Google Scholar
  4. 4.
    Reed, C., Rowe, G.: Araucaria: Software for argument analysis, diagramming and representation. International Journal of AI Tools 14 (3-4), 961–980 (2004)CrossRefGoogle Scholar
  5. 5.
    Reiter, E., Robertson, R., Osman, L.: Lesson from a failure: Generating tailored smoking cessation letters. Artificial Intelligence 144, 41–58 (2003)CrossRefGoogle Scholar
  6. 6.
    Reiter, E., Sripada, S., Robertson, R.: Acquiring correct knowledge for natural language generation. Journal of Artificial Intelligence Research 18, 491–516 (2003)MATHGoogle Scholar
  7. 7.
    Guerini, M., Stock, O., Zancanaro, M.: A taxonomy of strategies for multimodal persuasive message generation. Applied Artificial Intelligence Journal 21(2), 99–136 (2007)CrossRefGoogle Scholar
  8. 8.
    Toulmin, S.: The Use of Arguments. Cambridge University Press, Cambridge (1958)Google Scholar
  9. 9.
    Walton, D.: Argumentation Schemes for Presumptive Reasoning. Lawrence Erlbaum Associates, Mahwah (1996)Google Scholar
  10. 10.
    Zukerman, I., McConachy, R., Korb, K.: Using argumentation strategies in automated argument generation. In: Proceedings of the 1st International Natural Language Generation Conference, pp. 55–62 (2000)Google Scholar
  11. 11.
    Reed, C., Long, D.: Ordering and focusing in an architecture for persuasive discourse planning. In: Proceedings of the 6th European Workshop on Natural Language Generation (EWNLG 1997), Duisburg, Germany (1997)Google Scholar
  12. 12.
    Mazzotta, I.: deRosis, F., Carofiglio, V.: Portia: A user-adapted persuasion system in the healthy eating domain. IEEE Intelligent Systems, Special Issue on Argumentation Technology (in press, 2007)Google Scholar
  13. 13.
    Restificar, A.C., Ali, S.S., McRoy, S.W.: Arguer: Using argument schemas for argument detection and rebuttal in dialogs. In: Proceedings of the Seventh International Conference on User Modelling (UM-1999), June 20-24, 1999, Banff, Canada (1999)Google Scholar
  14. 14.
    Piwek, P.: An annotated bibliography of affective natural language generation. ITRI ITRI-02-02, University of Brighton (2002)Google Scholar
  15. 15.
    deRosis, F., Grasso, F.: Affective natural language generation. In: Paiva, A. (ed.) IWAI 1999. LNCS, vol. 1814, Springer, Heidelberg (2000)Google Scholar
  16. 16.
    Carofiglio, V., deRosis, F.: Combining logical with emotional reasoning in natural argumentation. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702, Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Carenini, G., Ng, R., Zwart, E.: Extracting knowledge from evaluative text. In: Proceedings of the 3rd international conference on Knowledge Capture, pp. 11–18 (2005)Google Scholar
  18. 18.
    Wilson, T., Wiebe, J., Hwa, R.: Just how mad are you? finding strong and weak opinion clauses. In: Proceedings of AAAI, pp. 761–769 (2004)Google Scholar
  19. 19.
    Carenini, G., Ng, R., Pauls, A.: Multi-document summarization of evaluative text. In: Proceedings of EACL (2006)Google Scholar
  20. 20.
    Radev, D., McKeown, K.: Building a generation knowledge source using internet-accessible newswire. In: Proceedings of the 5th Conference on Applied Natural Language Processing (1997)Google Scholar
  21. 21.
    Bull, P., Noordhuizen, M.: The mistiming of applause in political speeches. Journal of Language and Social Psychology 19, 275–294 (2000)CrossRefGoogle Scholar
  22. 22.
    Esuli, A., Sebastiani, F.: SentiWordNet: A publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation, Genova, IT, pp. 417–422 (2006)Google Scholar
  23. 23.
    Jing, H.: Usage of wordnet in natural language generation. In: Harabagiu, S. (ed.) Proceedings of the conference Use of WordNet in Natural Language Processing Systems, Somerset, New Jersey, Association for Computational Linguistics, pp. 128–134 (1998)Google Scholar
  24. 24.
    Pianta, E., Zanoli, R.: Tagpro: a system for italian pos tagging based on svm. Intelligenza Artificiale, Numero Speciale Strumenti di Elaborazione del Linguaggio Naturale per l’Italiano 4(2), 8–9 (2007)Google Scholar
  25. 25.
    Zanoli, R., Pianta, E.: Entitypro: exploiting svm for italian named entity recognition. Intelligenza Artificiale, Numero Speciale Strumenti di Elaborazione del Linguaggio Naturale per l’Italiano 4(2), 69–70 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marco Guerini
    • 1
  • Carlo Strapparava
    • 1
  • Oliviero Stock
    • 1
  1. 1.FBK-irstPovoItaly

Personalised recommendations