Abstract

We present in this paper the work that has been developed at Xerox Research Centre Europe to build a robust temporal text processor. The aim of this processor is to extract events described in texts and to link them, when possible, to a temporal anchor. Another goal is to be able to establish temporal ordering between the events expressed in texts. One of the originalities of this work is that the temporal processor is coupled with a syntactic-semantic analyzer. The temporal module takes then advantage of syntactic and semantic information extracted from text and at the same time, syntactic and semantic processing benefits from the temporal processing performed. As a result, analysis and management of temporal information is combined with other kinds of syntactic and semantic information, making possible a more refined text understanding processor that takes into account the temporal dimension.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J.: Toward a general theory of action and time. Artificial Intelligence 23, 123–154 (1984)MATHCrossRefGoogle Scholar
  2. 2.
    Aït-Mokhtar, S., Chanod, J.P., Roux, C.: Robustness beyond Shallowness: Incremental Deep Parsing. Natural Language Engineering 8, 121–144 (2002)CrossRefGoogle Scholar
  3. 3.
    Brun, C., Hagège, C.: Normalization and Paraphrasing using Symbolic Methods. In: 2nd Workshop on Paraphrasing. Proceedings of ACL 2003, Sapporo, Japan (2003)Google Scholar
  4. 4.
    Hagège, C., Roux, C.: Entre syntaxe et sémantique: Normalisation de l’analyse syntaxique en vue de l’amélioration de l’extraction d’information. In: Proceedings of TALN 2003, Batz-sur-Mer, France (2003)Google Scholar
  5. 5.
    Mani, I., Pustejovsky, J., Gaizauskas, R. (eds.): The Language of Time A reader. Oxford University Press, Oxford (2005)Google Scholar
  6. 6.
    Muller, P., Tannier, X.: Annotating and measuring temporal relations in texts. In: Proceedings of the 20th International Conference on Computational Linguistics (COLING 2004), Geneva, Switzerland, pp. 50–56 (2004)Google Scholar
  7. 7.
    Pustejovsky, J., Hanks, P., Saurí, R., See, A., Gaizauskas, R., Setzer, A., Sundheim, B.: The TIMEBANK Corpus. Corpus Linguistics, Lancaster, U.K (2003)Google Scholar
  8. 8.
    Roux, C.: Coupling a linguistic formalism and a script language. CSLP-2006, Coling-ACL, Sydney, Australia (2006)Google Scholar
  9. 9.
    Saurí, R., Littman, J., Knippen, B., Gaizauskas, R., Setzer, A., Pustejovsky, J.: TimeML Annotation Guidelines (2006)Google Scholar
  10. 10.
    Schilder, F., Habel, C., Versley, Y.: Temporal information extraction and question answering: deriving answers for where-questions. In: 2nd CoLogNET-ElsNET Symposium, Amsterdam (2003)Google Scholar
  11. 11.
    Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Katz, G., Pustejovsky, J.: SemEval-2007 – Task 15: TempEval Temporal Relation Identification. In: SemEval workshop in ACL (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Caroline Hagège
    • 1
  • Xavier Tannier
    • 2
  1. 1.Xerox Research Centre EuropeMeylanFrance
  2. 2.LIMSIOrsayFrance

Personalised recommendations