A Preliminary Study on the Robustness and Generalization of Role Sets for Semantic Role Labeling

  • Beñat Zapirain
  • Eneko Agirre
  • Lluís Màrquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4919)

Abstract

Most Semantic Role Labeling (SRL) systems rely on available annotated corpora, being PropBank the most widely used corpus so far. Propbank role set is based on theory-neutral numbered arguments, which are linked to fine grained verb-dependant semantic roles through the verb framesets. Recently, thematic roles from the computational verb lexicon VerbNet have been suggested to be more adequate for generalization and portability of SRL systems, since they represent a compact set of verb-independent general roles widely used in linguistic theory. Such thematic roles could also put SRL systems closer to application needs. This paper presents a comparative study of the behavior of a state-of-the-art SRL system on both role role sets based on the SemEval-2007 English dataset, which comprises the 50 most frequent verbs in PropBank.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carreras, X., Màrquez, L.: Introduction to the conll-2004 shared task: Semantic role labeling. In: Ng, H., Riloff, E. (eds.) Proceedings of the Eigth Conference on Computational Natural Language Learning (CoNLL-2004), Boston, MA, USA, May 2004, pp. 89–97. Association for Computational Linguistics (2004)Google Scholar
  2. 2.
    Carreras, X., Màrquez, L.: Introduction to the CoNLL-2005 shared task: Semantic role labeling. In: Dagan, I., Gildea, D. (eds.) Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005), Ann Arbor, Michigan, USA, June 2005, pp. 152–164. Association for Computational Linguistics (2005)Google Scholar
  3. 3.
    Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational Linguistics 28(3), 245–288 (2002)CrossRefGoogle Scholar
  4. 4.
    Kipper, K., Dang, H.T., Palmer, M.: Class based construction of a verb lexicon. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI-2000), Austin, TX (July 2000)Google Scholar
  5. 5.
    Levin, B.: English Verb Classes and Alternations: A Preliminary Investigation. The University of Chicago Press, Chicago (1993)Google Scholar
  6. 6.
    Loper, E., Yi, S.-T., Palmer, M.: Combining lexical resources: Mapping between propbank and verbnet. In: Proceedings of the 7th International Workshop on Computational Linguistics, Tilburg, the Netherlands (2007)Google Scholar
  7. 7.
    Noreen, E.W.: Computer-Intensive Methods for Testing Hypotheses. John Wiley & Sons, Chichester (1989)Google Scholar
  8. 8.
    Palmer, M., Gildea, D., Kingsbury, P.: The proposition bank: An annotated corpus of semantic roles. Computational Linguistics 31(1), 71–105 (2005)CrossRefGoogle Scholar
  9. 9.
    Pradhan, S., Loper, E., Dligach, D., Palmer, M.: Semeval-2007 task-17: English lexical sample, SRL and all words. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech Republic, June 2007, pp. 87–92. Association for Computational Linguistics (2007)Google Scholar
  10. 10.
    Surdeanu, M., Màrquez, L., Carreras, X., Comas, P.R.: Combination strategies for semantic role labeling. Journal of Artificial Intelligence Research (JAIR) 29, 105–151 (2007)Google Scholar
  11. 11.
    Yi, S.-T., Loper, E., Palmer, M.: Can semantic roles generalize across genres? In: Proceedings of the Human Language Technology Conferences/North American Chapter of the Association for Computational Linguistics Annual Meeting (HLT/NAACL-2007) (2007)Google Scholar
  12. 12.
    Zapirain, B., Agirre, E., Márquez, L.: Sequential SRL using selectional preferences: An aproach with Maximum Entropy Markov Models. In: Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval 2007), Prague, Czech Republic, Association for Computational Linguistics (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Beñat Zapirain
    • 1
  • Eneko Agirre
    • 1
  • Lluís Màrquez
    • 2
  1. 1.IXA NLP GroupUniversity of The Basque Country 
  2. 2.TALP Research CenterTechnical University of Catalonia 

Personalised recommendations