Layer Structures and Conceptual Hierarchies in Semantic Representations for NLP

  • Hermann Helbig
  • Ingo Glöckner
  • Rainer Osswald
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4919)


Knowledge representation systems aiming at full natural language understanding need to cover a wide range of semantic phenomena including lexical ambiguities, coreference, modalities, counterfactuals, and generic sentences. In order to achieve this goal, we argue for a multidimensional view on the representation of natural language semantics. The proposed approach, which has been successfully applied to various NLP tasks including text retrieval and question answering, tries to keep the balance between expressiveness and manageability by introducing separate semantic layers for capturing dimensions such as facticity, degree of generalization, and determination of reference. Layer specifications are also used to express the distinction between categorical and situational knowledge and the encapsulation of knowledge needed e.g. for a proper modeling of propositional attitudes. The paper describes the role of these classificational means for natural language understanding, knowledge representation, and reasoning, and exemplifies their use in NLP applications.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Benthem, J., ter Meulen, A. (eds.): Handbook of Logic and Language. North-Holland, Amsterdam (1997)MATHGoogle Scholar
  2. 2.
    Helbig, H.: Knowledge Representation and the Semantics of Natural Language. Springer, Berlin (2006)MATHGoogle Scholar
  3. 3.
    Hartrumpf, S., Helbig, H., Osswald, R.: The semantically based computer lexicon HaGenLex – Structure and technological environment. Traitement automatique des langues 44(2), 81–105 (2003)Google Scholar
  4. 4.
    Hartrumpf, S.: Hybrid Disambiguation in Natural Language Analysis. Der Andere Verlag, Osnabrück, Germany (2003)Google Scholar
  5. 5.
    Hartrumpf, S.: Question answering using sentence parsing and semantic network matching. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 512–521. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Glöckner, I., Hartrumpf, S., Leveling, J.: Logical validation, answer merging and witness selection – a case study in multi-stream question answering. In: Proc. of RIAO 2007, Pittsburgh, PA (2007)Google Scholar
  7. 7.
    Leveling, J.: Formale Interpretation von Nutzeranfragen für natürlichsprachliche Interfaces zu Informationsangeboten im Internet. Der andere Verlag, Tönning (2006)Google Scholar
  8. 8.
    Hartrumpf, S., Helbig, H., Leveling, J., Osswald, R.: An architecture for controlling simple language in web pages. eMinds: Int. J. on Human-Computer Interaction 1(2), 93–112 (2006)Google Scholar
  9. 9.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 3–28. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Brachman, R.: What IS-A is and isn’t: An analysis of taxonomic links in semantic networks. IEEE Computer 16, 30–36 (1983)Google Scholar
  12. 12.
    Artale, A., Franconi, E., Guarino, N., Pazzi, L.: Part-whole relations in object-centered systems: An overview. Data & Knowledge Engineering 20(3), 347–383 (1996)MATHCrossRefGoogle Scholar
  13. 13.
    Hobbs, J.: Ontological promiscuity. In: Proc. 23rd Annual Meeting ACL, pp. 61–69 (1985)Google Scholar
  14. 14.
    de Marneffe, M.C., MacCartney, B., Grenager, T., Cer, D., Rafferty, A., Manning, C.D.: Learning to distinguish valid textual entailments. In: Proc. of the 2nd Pascal RTE Challenge Workshop (2006)Google Scholar
  15. 15.
    Hickl, A., Bensley, J.: A discourse commitment-based framework for recognizing textual entailment. In: Proc. Workshop on Textual Entailment and Paraphrasing, Prague, ACL, pp. 171–176 (2007)Google Scholar
  16. 16.
    Bobrow, D., Condoravdi, C., Crouch, R., de Paiva, V., Kaplan, R., Karttunen, L., King, T., Zaenen, A.: A basic logic for textual inference. In: Proceedings of the AAAI Workshop on Inference for Textual Question Answering, Pittsburgh, PA (2005)Google Scholar
  17. 17.
    Nairn, R., Condoravdi, C., Karttunen, L.: Computing relative polarity for textual inference. In: Proceedings of ICoS-5 (Inference in Computational Semantics), Buxton, UK (2006)Google Scholar
  18. 18.
    Klutsch, A.: Axiomatische Behandlung von Faktizität in MultiNet unter besonderer Berücksichtigung faktiver und implikativer Verben. Master’s thesis, FernUniversität Hagen (2007)Google Scholar
  19. 19.
    Glöckner, I., Hartrumpf, S., Helbig, H.: Automatic knowledge acquisition by semantic analysis and assimilation of textual information. In: Proc. of KONVENS 2006, Konstanz, Germany, pp. 36–43 (2006)Google Scholar
  20. 20.
    Glöckner, I., Helbig, H.: Wissensrepräsentation und Antwortfindung mit Mehrschichtigen Erweiterten Semantischen Netzen. KI 2, 49–55 (2005)Google Scholar
  21. 21.
    Kintzel, F.: Entwurf und Implementierung einer natürlichsprachlichen Generierungskomponente für mehrschichtige erweiterte semantische Netze. Master’s thesis, FernUniversität in Hagen (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hermann Helbig
    • 1
  • Ingo Glöckner
    • 1
  • Rainer Osswald
    • 1
  1. 1.Intelligent Information and Communication SystemsFernUniversität in HagenGermany

Personalised recommendations