# Symmetric Logic of Proofs

• Sergei Artemov
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4800)

## Abstract

The Logic of Proofs LP captures the invariant propositional properties of proof predicates t is a proof of F with a set of operations on proofs sufficient for realizing the whole modal logic S4 and hence the intuitionistic logic IPC. Some intuitive properties of proofs, however, are not invariant and hence not present in LP. For example, the choice function ‘+’ in LP, which is specified by the condition s:Fvt:F→(s + t):F, is not necessarily symmetric. In this paper, we introduce an extension of the Logic of Proofs, SLP, which incorporates natural properties of the standard proof predicate in Peano Arithmetic:

t is a code of a derivation containing F,

including the symmetry of Choice. We show that SLP produces Brouwer-Heyting-Kolmogorov proofs with a rich structure, which can be useful for applications in epistemic logic and other areas.

## Preview

Unable to display preview. Download preview PDF.

### References

1. 1.
Artemov, S.: Operational modal logic. Technical Report MSI 95-29, Cornell University (1995)Google Scholar
2. 2.
Artemov, S.: Explicit provability and constructive semantics. Bulletin of Symbolic Logic 7(1), 1–36 (2001)
3. 3.
Artemov, S.: Operations on proofs that can be specified by means of modal logic. In: Advances in Modal Logic., vol. 2, pp. 59–72. CSLI Publications, Stanford University (2001)Google Scholar
4. 4.
Artemov, S.: Evidence-based common knowledge. Technical Report TR-2004018, CUNY Ph.D. Program in Computer Science (2005)Google Scholar
5. 5.
Artemov, S.: Justified common knowledge. Theoretical Computer Science 357(1–3), 4–22 (2006)
6. 6.
Artemov, S.: On two models of provability. In: Gabbay, M.Z.D.M., Goncharov, S.S. (eds.) Mathematical Problems from Applied Logic II, pp. 1–52. Springer, New York (2007)
7. 7.
Artemov, S., Beklemishev, L.: Provability logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 13, pp. 229–403. Kluwer, Dordrecht (2004)Google Scholar
8. 8.
Artemov, S., Nogina, E.: Introducing justification into epistemic logic. Journal of Logic and Computation 15(6), 1059–1073 (2005)
9. 9.
Artemov, S., Nogina, E.: On epistemic logic with justification. In: van der Meyden, R. (ed.) Theoretical Aspects of Rationality and Knowledge. Proceedings of the Tenth Conference (TARK 2005), Singapore, June 10–12, 2005, pp. 279–294. National University of Singapore (2005)Google Scholar
10. 10.
Artemov, S., Strassen, T.: Functionality in the basic logic of proofs. Technical Report IAM 93-004, Department of Computer Science, University of Bern, Switzerland (1993)Google Scholar
11. 11.
Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1993)
12. 12.
Brezhnev, V., Kuznets, R.: Making knowledge explicit: How hard it is. Theoretical Computer Science 357(1–3), 23–34 (2006)
13. 13.
Fitting, M.: A semantics for the logic of proofs. Technical Report TR-2003012, CUNY Ph.D. Program in Computer Science (2003)Google Scholar
14. 14.
Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied Logic 132(1), 1–25 (2005)
15. 15.
Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse Math. Kolloq. 4, 39–40 (1933) English translation In: Feferman, S. et al. (eds.) Kurt Gödel Collected Works, vol. 1, pp 301–303. Oxford University Press, Oxford, Clarendon Press, New York (1986)Google Scholar
16. 16.
Gödel, K.: Vortrag bei Zilsel. In: Feferman, S. (ed.) Kurt Gödel Collected Works, vol. III, pp. 86–113. Oxford University Press, Oxford (1995)Google Scholar
17. 17.
Goris, E.: Logic of proofs for bounded arithmetic. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 191–201. Springer, Heidelberg (2006)
18. 18.
Kleene, S.: Introduction to Metamathematics. Van Norstrand (1952)Google Scholar
19. 19.
Krupski, N.V.: On the complexity of the reflected logic of proofs. Theoretical Computer Science 357(1), 136–142 (2006)
20. 20.
Krupski, V.N.: Operational logic of proofs with functionality condition on proof predicate. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 167–177. Springer, Heidelberg (1997)Google Scholar
21. 21.
Krupski, V.N.: The single-conclusion proof logic and inference rules specification. Annals of Pure and Applied Logic 113(1–3), 181–206 (2001)
22. 22.
Krupski, V.N.: Referential logic of proofs. Theoretical Computer Science 357(1), 143–166 (2006)
23. 23.
Kuznets, R.: On the complexity of explicit modal logics. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 371–383. Springer, Heidelberg (2000)
24. 24.
Milnikel, R.: Derivability in certain subsystems of the Logic of Proofs is $$\Pi{_2^p}$$-complete. Annals of Pure and Applied Logic 145(3), 223–239 (2007)
25. 25.
Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)Google Scholar
26. 26.
Smoryński, C.: The incompleteness theorems. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 821–865. North Holland, Amsterdam (1977)Google Scholar
27. 27.
Solovay, R.M.: Provability interpretations of modal logic. Israel Journal of Mathematics 28, 33–71 (1976)

## Copyright information

© Springer-Verlag Berlin Heidelberg 2008

## Authors and Affiliations

• Sergei Artemov
• 1
1. 1.CUNY Graduate CenterNew YorkUSA