Connectives in Cumulative Logics

  • Daniel Lehmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4800)


Cumulative logics are studied in an abstract setting, i.e., without connectives, very much in the spirit of Makinson’s [11] early work. A powerful representation theorem characterizes those logics by choice functions that satisfy a weakening of Sen’s property α, in the spirit of the author’s [9]. The representation results obtained are surprisingly smooth: in the completeness part the choice function may be defined on any set of worlds, not only definable sets and no definability-preservation property is required in the soundness part. For abstract cumulative logics, proper conjunction and negation may be defined. Contrary to the situation studied in [9] no proper disjunction seems to be definable in general. The cumulative relations of [8] that satisfy some weakening of the consistency preservation property all define cumulative logics with a proper negation. Quantum Logics, as defined by [3] are such cumulative logics but the negation defined by orthogonal complement does not provide a proper negation.


Closed Subspace Choice Function Orthogonal Complement Quantum Logic Atomic Proposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of Mathematics 37, 823–843 (1936)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Dalla Chiara, M.L.: Quantum logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 6, pp. 129–228. Kluwer, Dordrecht (2001), Google Scholar
  3. 3.
    Engesser, K., Gabbay, D.M.: Quantum logic, Hilbert space, revision theory. Artificial Intelligence 136(1), 61–100 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Freund, M., Lehmann, D.: Nonmonotonic inference operations. Bulletin of the IGPL 1(1), 23–68 (1993), Max-Planck-Institut für Informatik, Saarbrücken, GermanyGoogle Scholar
  5. 5.
    Freund, M., Lehmann, D.: Nonmonotonic reasoning: from finitary relations to infinitary inference operations. Studia Logica 53(2), 161–201 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Freund, M., Lehmann, D., Makinson, D.: Canonical extensions to the infinite case of finitary nonmonotonic inference operations. In: Brewka, G., Freitag, H. (eds.) Workshop on Nomonotonic Reasoning, Sankt Augustin, FRG, December 1989, vol. (443), pp. 133–138 (1989), Arbeitspapiere der GMD no. 443Google Scholar
  7. 7.
    Hacking, I.: What is logic? The Journal of Philosophy 76(6), 285–319 (1979)CrossRefGoogle Scholar
  8. 8.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1–2), 167–207 (2021)MathSciNetGoogle Scholar
  9. 9.
    Lehmann, D.: Nonmonotonic logics and semantics. Journal of Logic and Computation 11(2), 229–256 (2001) CoRR: cs.AI/0202018MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lehmann, D.: A presentation of quantum logic based on an and then connective. Journal of Logic and Computation (to appear, 2007), doi:10.1093/logcom/exm054Google Scholar
  11. 11.
    Makinson, D.: General theory of cumulative inference. In: Reinfrank, M., et al. (eds.) Non-Monotonic Reasoning 1988. LNCS, vol. 346, pp. 1–18. Springer, Heidelberg (1988)Google Scholar
  12. 12.
    Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, Nonmonotonic and Uncertain Reasoning, vol. 3, pp. 35–110. Oxford University Press, Oxford (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Daniel Lehmann
    • 1
  1. 1.School of Computer Science and EngineeringHebrew UniversityJerusalemIsrael

Personalised recommendations