Pillars of Computer Science pp 424-440

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4800) | Cite as

Connectives in Cumulative Logics

  • Daniel Lehmann

Abstract

Cumulative logics are studied in an abstract setting, i.e., without connectives, very much in the spirit of Makinson’s [11] early work. A powerful representation theorem characterizes those logics by choice functions that satisfy a weakening of Sen’s property α, in the spirit of the author’s [9]. The representation results obtained are surprisingly smooth: in the completeness part the choice function may be defined on any set of worlds, not only definable sets and no definability-preservation property is required in the soundness part. For abstract cumulative logics, proper conjunction and negation may be defined. Contrary to the situation studied in [9] no proper disjunction seems to be definable in general. The cumulative relations of [8] that satisfy some weakening of the consistency preservation property all define cumulative logics with a proper negation. Quantum Logics, as defined by [3] are such cumulative logics but the negation defined by orthogonal complement does not provide a proper negation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of Mathematics 37, 823–843 (1936)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Dalla Chiara, M.L.: Quantum logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 6, pp. 129–228. Kluwer, Dordrecht (2001), http://www.philos.unifi.it/persone/dallachiara.htm Google Scholar
  3. 3.
    Engesser, K., Gabbay, D.M.: Quantum logic, Hilbert space, revision theory. Artificial Intelligence 136(1), 61–100 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Freund, M., Lehmann, D.: Nonmonotonic inference operations. Bulletin of the IGPL 1(1), 23–68 (1993), Max-Planck-Institut für Informatik, Saarbrücken, GermanyGoogle Scholar
  5. 5.
    Freund, M., Lehmann, D.: Nonmonotonic reasoning: from finitary relations to infinitary inference operations. Studia Logica 53(2), 161–201 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Freund, M., Lehmann, D., Makinson, D.: Canonical extensions to the infinite case of finitary nonmonotonic inference operations. In: Brewka, G., Freitag, H. (eds.) Workshop on Nomonotonic Reasoning, Sankt Augustin, FRG, December 1989, vol. (443), pp. 133–138 (1989), Arbeitspapiere der GMD no. 443Google Scholar
  7. 7.
    Hacking, I.: What is logic? The Journal of Philosophy 76(6), 285–319 (1979)CrossRefGoogle Scholar
  8. 8.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1–2), 167–207 (2021)MathSciNetGoogle Scholar
  9. 9.
    Lehmann, D.: Nonmonotonic logics and semantics. Journal of Logic and Computation 11(2), 229–256 (2001) CoRR: cs.AI/0202018MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lehmann, D.: A presentation of quantum logic based on an and then connective. Journal of Logic and Computation (to appear, 2007), doi:10.1093/logcom/exm054Google Scholar
  11. 11.
    Makinson, D.: General theory of cumulative inference. In: Reinfrank, M., et al. (eds.) Non-Monotonic Reasoning 1988. LNCS, vol. 346, pp. 1–18. Springer, Heidelberg (1988)Google Scholar
  12. 12.
    Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, Nonmonotonic and Uncertain Reasoning, vol. 3, pp. 35–110. Oxford University Press, Oxford (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Daniel Lehmann
    • 1
  1. 1.School of Computer Science and EngineeringHebrew UniversityJerusalemIsrael

Personalised recommendations