Advertisement

Staged Self-assembly: Nanomanufacture of Arbitrary Shapes with O(1) Glues

  • Erik D. Demaine
  • Martin L. Demaine
  • Sándor P. Fekete
  • Mashhood Ishaque
  • Eynat Rafalin
  • Robert T. Schweller
  • Diane L. Souvaine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4848)

Abstract

We introduce staged self-assembly of Wang tiles, where tiles can be added dynamically in sequence and where intermediate constructions can be stored for later mixing. This model and its various constraints and performance measures are motivated by a practical nanofabrication scenario through protein-based bioengineering. Staging allows us to break through the traditional lower bounds in tile self-assembly by encoding the shape in the staging algorithm instead of the tiles. All of our results are based on the practical assumption that only a constant number of glues, and thus only a constant number of tiles, can be engineered, as each new glue type requires significant biochemical research and experiments. Under this assumption, traditional tile self-assembly cannot even manufacture an n ×n square; in contrast, we show how staged assembly enables manufacture of arbitrary orthogonal shapes in a variety of precise formulations of the model.

Keywords

Tile System Decomposition Tree Kolmogorov Complexity Full Connectivity Stage Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACG+02]
    Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanés, P.M., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (electronic), pp. 23–32. ACM Press, New York (2002)CrossRefGoogle Scholar
  2. [ACG+05]
    Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., de Espanes, P.M., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM Journal on Computing 34(6), 1493–1515 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [ACGH01]
    Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 740–748. ACM Press, New York (2001)Google Scholar
  4. [Adl00]
    Adleman, L.M.: Toward a mathematical theory of self-assembly. Technical Report 00-722, Department of Computer Science, University of Southern California (January 2000)Google Scholar
  5. [BRW05]
    Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
  6. [KS06]
    Kao, M.-Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 571–580. ACM Press, New York (2006)CrossRefGoogle Scholar
  7. [MLRS00]
    Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)CrossRefGoogle Scholar
  8. [PPA+06]
    Park, S.H., Pistol, C., Ahn, S.J., Reif, J.H., Lebeck, A.R., Dwyer, C., LaBean, T.H.: Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angewandte Chemie 45, 735–739 (2006)CrossRefGoogle Scholar
  9. [Rei99]
    Reif, J.: Local parallel biomolecular computation. In: Proc. DNA-Based Computers, pp. 217–254 (1999)Google Scholar
  10. [Rot06]
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  11. [RPW04]
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA sierpinski triangles. PLoS Biology 2(12), 424 (2004)CrossRefGoogle Scholar
  12. [RW00]
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 459–468. ACM Press, New York (2000)Google Scholar
  13. [See98]
    Seeman, N.C.: DNA nanotechnology. In: Siegel, R.W., Hu, E., Roco, M.C. (eds.) WTEC Workshop Report on R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices in the United States (January 1998)Google Scholar
  14. [SKFM05]
    Somei, K., Kaneda, S., Fujii, T., Murata, S.: A microfluidic device for dna tile self-assembly. In: DNA, pp. 325–335 (2005)Google Scholar
  15. [SQJ04]
    Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004)CrossRefGoogle Scholar
  16. [SW04]
    Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp. 344–354. Springer, Heidelberg (2005)Google Scholar
  17. [Wan61]
    Wang, H.: Proving theorems by pattern recognition—II. The Bell System Technical Journal 40(1), 1–41 (1961)Google Scholar
  18. [Win98]
    Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology, Pasadena (1998)Google Scholar
  19. [WLWS98]
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • Martin L. Demaine
    • 1
  • Sándor P. Fekete
    • 2
  • Mashhood Ishaque
    • 3
  • Eynat Rafalin
    • 4
  • Robert T. Schweller
    • 5
  • Diane L. Souvaine
    • 3
  1. 1.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA
  2. 2.Institut für Mathematische OptimierungTechnische Universität BraunschweigBraunschweigGermany
  3. 3.Department of Computer ScienceTufts UniversityMedfordUSA
  4. 4.Google Inc. 
  5. 5.Department of Computer ScienceUniversity of Texas Pan AmericanEdinburgUSA

Personalised recommendations