Theory of the Optical Response of Singleand Coupled Semiconductor Quantum Dots

  • C. Weber
  • M. Richter
  • S. Ritter
  • A. Knorr
Part of the NanoScience and Technology book series (NANO)

Abstract

Due to their quasi-zero-dimensional structure, quantum dots show optical properties which are different from those of nanostructures with spatial confinement in less than three dimensions. In this chapter, the theory of both the linear optical properties and nonlinear dynamics of semiconductor quan- tum dots is discussed. The main focus is on the experimentally accessible quantities such as absorption/luminescence and pump-probe spectra. The results are calculated for single and coupled quantum dots (Förster coupling) as well as quantum dot ensembles. The focus is on obtaining a microscopic understanding of the interactions of optically excited quantum dot electrons with the surrounding crystal vibrations (electron–phonon coupling). The discussed interactions are important for applications in, e.g., quantum information processing and laser devices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999) Google Scholar
  2. 2.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1999) Google Scholar
  3. 3.
    N. Baer, S. Schulz, S. Schumacher, P. Gartner, G. Czycholl, F. Jahnke, Optical properties of self-organized wurtzite InN/GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation. Appl. Phys. Lett. 87(23), 231114 (2005) CrossRefGoogle Scholar
  4. 4.
    A.J. Williamson, A. Zunger, InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures. Phys. Rev. B 59(24), 15819 (1999) CrossRefGoogle Scholar
  5. 5.
    O. Stier, M. Grundmann, D. Bimberg, Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory. Phys. Rev. B 59(8), 5688 (1999) CrossRefGoogle Scholar
  6. 6.
    R. Heitz, O. Stier, I. Mukhametzhanov, A. Madhukar, D. Bimberg, Quantum size effect in self-organized InAs/GaAs quantum dots. Phys. Rev. B 62(16), 11017 (2000) CrossRefGoogle Scholar
  7. 7.
    B. Krummheuer, V.M. Axt, T. Kuhn, Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots. Phys. Rev. B 65(19), 195313 (2002) CrossRefGoogle Scholar
  8. 8.
    T. Unold, K. Mueller, C. Lienau, T. Elsaesser, A.D. Wieck, Optical control of excitons in a pair of quantum dots coupled by the dipole–dipole interaction. Phys. Rev. Lett. 94(13), 137404 (2005) CrossRefGoogle Scholar
  9. 9.
    H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 2004) Google Scholar
  10. 10.
    A. Thränhardt, S. Kuckenburg, A. Knorr, T. Meier, S.W. Koch, Quantum theory of phonon-assisted exciton formation and luminescence in semiconductor quantum wells. Phys. Rev. B 62(4), 2706 (2000) CrossRefGoogle Scholar
  11. 11.
    G.D. Mahan, Many-Particle Physics (Kluwer Academic/Plenum, New York, 2000) Google Scholar
  12. 12.
    J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots. Phys. Rev. Lett. 91(12), 127401 (2003) CrossRefGoogle Scholar
  13. 13.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997) Google Scholar
  14. 14.
    K.J. Ahn, J. Förstner, A. Knorr, Resonance fluorescence of semiconductor quantum dots: Signatures of the electron-phonon interaction. Phys. Rev. B 71(15), 153309 (2005) CrossRefGoogle Scholar
  15. 15.
    F. Rossi, T. Kuhn, Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74(3), 895 (2002) CrossRefGoogle Scholar
  16. 16.
    J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Phonon-induced damping of Rabi oscillations in semiconductor quantum dots. Phys. Status Solidi B 238(3), 419 (2003) CrossRefGoogle Scholar
  17. 17.
    J. Danckwerts, K.J. Ahn, J. Förstner, A. Knorr, Theory of ultrafast nonlinear optics of Coulomb-coupled semiconductor quantum dots: Rabi oscillations and pump-probe spectra. Phys. Rev. B 73(16), 165318 (2006) CrossRefGoogle Scholar
  18. 18.
    T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 6, 55 (1948) CrossRefGoogle Scholar
  19. 19.
    T. Förster, Delocalized excitation and excitation transfer, in Modern Quantum Chemistry, ed. by O. Sinanoglu (Academic, New York, 1965), p. 93 Google Scholar
  20. 20.
    T. Stauber, R. Zimmermann, Optical absorption in quantum dots: Coupling to longitudinal optical phonons treated exactly. Phys. Rev. B 73(11), 115303 (2006) CrossRefGoogle Scholar
  21. 21.
    M. Kira, S.W. Koch, Quantum-optical spectroscopy of semiconductors. Phys. Rev. A 73(1), 013813 (2006) CrossRefGoogle Scholar
  22. 22.
    I. Waldmüller, J. Förstner, A. Knorr, Self-consistent projection operator theory of intersubband absorbance in semiconductor quantum wells, in Nonequilibrium Physics at Short Time Scales, ed. by K. Morawetz (Springer, Berlin, 2004), p. 251 Google Scholar
  23. 23.
    M. Richter, M. Schaarschmidt, A. Knorr, W. Hoyer, J.V. Moloney, E.M. Wright, M. Kira, S.W. Koch, Quantum theory of incoherent THz emission of an interacting electron-ion plasma. Phys. Rev. A 71(5), 053819 (2005) CrossRefGoogle Scholar
  24. 24.
    M. Richter, S. Butscher, M. Schaarschmidt, A. Knorr, Model of thermal terahertz light emission of a two-dimensional electron gas. Phys. Rev. B 75(11), 115331 (2007) CrossRefGoogle Scholar
  25. 25.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002) Google Scholar
  26. 26.
    V.M. Axt, A. Stahl, A dynamics-controlled truncation scheme for the hierarchy of density matrices in semiconductor optics. Z. Phys. B 93, 195 (1994) CrossRefGoogle Scholar
  27. 27.
    S. Butscher, A. Knorr, Theory of strong electron-phonon coupling for ultrafast intersubband excitations. Phys. Status Solidi B 243(10), 2423 (2006) CrossRefGoogle Scholar
  28. 28.
    S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995) Google Scholar
  29. 29.
    N.G. van Kampen, A cumulant expansion for stochastic linear differential equations. II. Physica 74, 239 (1974) CrossRefGoogle Scholar
  30. 30.
    J. Förstner, K.J. Ahn, J. Danckwerts, M. Schaarschmidt, I. Waldmüller, C. Weber, A. Knorr, Light propagation- and many-particle-induced non-Lorentzian lineshapes in semiconductor nanooptics. Phys. Status Solidi B 234(1), 155 (2002) CrossRefGoogle Scholar
  31. 31.
    R. Zimmermann, E. Runge, Dephasing in quantum dots via electron-phonon interaction, in Proc. 26th ICPS Edinburgh, ed. by A.R. Long, J.H. Davies. IOP Conf. Series, vol. 171 (IOP Publishing, Bristol, 2002). Paper M 3.1 Google Scholar
  32. 32.
    T. Feldtmann, L. Schneebeli, M. Kira, S.W. Koch, Quantum theory of light emission from a semiconductor quantum dot. Phys. Rev. B 73(15), 155319 (2006) CrossRefGoogle Scholar
  33. 33.
    N. Baer, C. Gies, J. Wiersig, F. Jahnke, Luminescence of a semiconductor quantum dot system. Eur. Phys. J. B 50(3), 411 (2006) CrossRefGoogle Scholar
  34. 34.
    E.A. Muljarov, T. Takagahara, R. Zimmermann, Phonon-induced exciton dephasing in quantum dot molecules. Phys. Rev. Lett. 95(17), 177405 (2005) CrossRefGoogle Scholar
  35. 35.
    E.A. Muljarov, R. Zimmermann, Dephasing in quantum dots: Quadratic coupling to acoustic phonons. Phys. Rev. Lett. 93(23), 237401 (2004) CrossRefGoogle Scholar
  36. 36.
    P. Machnikowski, Change of decoherence scenario and appearance of localization due to reservoir anharmonicity. Phys. Rev. Lett. 96(14), 140405 (2006) CrossRefGoogle Scholar
  37. 37.
    P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87(15), 157401 (2001) CrossRefGoogle Scholar
  38. 38.
    L. Besombes, K. Kheng, L. Marsal, H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63(15), 155307 (2001) CrossRefGoogle Scholar
  39. 39.
    I. Favero, G. Cassabois, R. Ferreira, D. Darson, C. Voisin, J. Tignon, C. Delalande, G. Bastard, P. Roussignol, Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots. Phys. Rev. B 68(23), 233301 (2003) CrossRefGoogle Scholar
  40. 40.
    A.V. Uskov, A.-P. Jauho, B. Tromborg, J. Mørk, R. Lang, Dephasing times in quantum dots due to elastic LO phonon-carrier collisions. Phys. Rev. Lett. 85(7), 1516 (2000) CrossRefGoogle Scholar
  41. 41.
    P. Machnikowski, L. Jacak, Exciton-LO phonon dynamics in InAs/GaAs quantum dots: Effects of zone-edge phonon damping. Phys. Rev. B 71(11), 115309 (2005) CrossRefGoogle Scholar
  42. 42.
    E.A. Muljarov, R. Zimmermann, Exciton dephasing in quantum dots due to LO-phonon coupling: An exactly solvable model. Phys. Rev. Lett. 98(18), 187401 (2007) CrossRefGoogle Scholar
  43. 43.
    B.R. Mollow, Pure-state analysis of resonant light scattering: Radiative damping, saturation, and multiphoton effects. Phys. Rev. A 12(5), 1919 (1975) CrossRefGoogle Scholar
  44. 44.
    I.I. Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 51(8), 652 (1937) CrossRefGoogle Scholar
  45. 45.
    I.I. Rabi, J.R. Zacharias, S. Millman, P. Kusch, A new method of measuring nuclear magnetic moment. Phys. Rev. 53(4), 318 (1938) CrossRefGoogle Scholar
  46. 46.
    A. Krügel, V.M. Axt, T. Kuhn, P. Machnikowski, A. Vagov, The role of acoustic phonons for Rabi oscillations in semiconductor quantum dots. Appl. Phys. B 81, 897 (2005) CrossRefGoogle Scholar
  47. 47.
    A. Vagov, M.D. Croitoru, V.M. Axt, T. Kuhn, F.M. Peeters, High pulse area undamping of Rabi oscillations in quantum dots coupled to phonons. Phys. Status Solidi B 243(10), 2233 (2006) CrossRefGoogle Scholar
  48. 48.
    A. Krügel, V.M. Axt, T. Kuhn, Back action of nonequilibrium phonons on the optically induced dynamics in semiconductor quantum dots. Phys. Rev. B 73(3), 035302 (2006) CrossRefGoogle Scholar
  49. 49.
    S. Stufler, P. Ester, A. Zrenner, M. Bichler, Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system. Phys. Rev. B 72(12), 121301 (2005) CrossRefGoogle Scholar
  50. 50.
    A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter, Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612 (2002) CrossRefGoogle Scholar
  51. 51.
    P. Borri, W. Langbein, S. Schneider, U. Woggon, R.L. Sellin, D. Ouyang, D. Bimberg, Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots. Phys. Rev. B 66(8), 081306 (2002) CrossRefGoogle Scholar
  52. 52.
    S.W. Koch, N. Peyghambarian, M. Lindberg, Transient and steady-state optical non-linearities in semiconductors. J. Phys. C 21, 5229 (1988) CrossRefGoogle Scholar
  53. 53.
    T. Guenther, C. Lienau, T. Elsaesser, M. Glanemann, V.M. Axt, T. Kuhn, S. Eshlaghi, A.D. Wieck, Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy. Phys. Rev. Lett. 89(5), 057401 (2002) CrossRefGoogle Scholar
  54. 54.
    T. Unold, K. Mueller, C. Lienau, T. Elsaesser, A.D. Wieck, Optical Stark effect in a quantum dot: Ultrafast control of single exciton polarizations. Phys. Rev. Lett. 92(15), 157401 (2004) CrossRefGoogle Scholar
  55. 55.
    I.V. Ostrovskii, A.K. Rozhko, V.N. Lysenko, Ultrasonic luminescence of CdS single crystals. Sov. Tech. Phys. Lett. 5, 377 (1979) Google Scholar
  56. 56.
    P.P. Corso, L. Lo Cascio, F. Persico, Simple vectorial model for the spectrum of a two-level atom in an intense low-frequency field. Phys. Rev. A 58(2), 1549 (1998) CrossRefGoogle Scholar
  57. 57.
    F. Milde, K.J. Ahn, A. Knorr, Theory of quantum dot luminescence from acoustically excited intersubband transitions. Phys. Status Solidi B 243(10), 2257 (2006) CrossRefGoogle Scholar
  58. 58.
    K.J. Ahn, F. Milde, A. Knorr, Phonon-wave-induced resonance fluorescence in semiconductor nanostructures: Acoustoluminescence in the terahertz range. Phys. Rev. Lett. 98(2), 027401 (2007) CrossRefGoogle Scholar
  59. 59.
    T. Renger, R.A. Marcus, On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra. J. Chem. Phys. 116(22), 9997 (2002) CrossRefGoogle Scholar
  60. 60.
    M. Richter, K.J. Ahn, A. Knorr, A. Schliwa, D. Bimberg, M. El-Amine Madjet, T. Renger, Theory of excitation transfer in coupled nanostructures—from quantum dots to light harvesting complexes. Phys. Status Solidi B 243(10), 2302 (2006) CrossRefGoogle Scholar
  61. 61.
    Y. Mitsumori, A. Hasegawa, M. Sasaki, H. Maruki, F. Minami, Local field effect on Rabi oscillations of excitons localized to quantum islands in a single quantum well. Phys. Rev. B 71(23), 233305 (2005) CrossRefGoogle Scholar
  62. 62.
    A. Knorr, K.-E. Süsse, D.-G. Welsch, Coherent interatomic interaction and cooperative effects in resonance fluorescence. J. Opt. Soc. Am. B 9(7), 1174 (1992) CrossRefGoogle Scholar
  63. 63.
    K.J. Ahn, A. Knorr, Radiative lifetime of quantum confined excitons near interfaces. Phys. Rev. B 68(16), 161307 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • C. Weber
  • M. Richter
  • S. Ritter
  • A. Knorr

There are no affiliations available

Personalised recommendations