On the Approximability of Comparing Genomes with Duplicates

  • Sébastien Angibaud
  • Guillaume Fertin
  • Irena Rusu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4921)

Abstract

A central problem in comparative genomics consists in computing a (dis-)similarity measure between two genomes, e.g. in order to construct a phylogenetic tree. A large number of such measures has been proposed in the recent past: number of reversals, number of breakpoints, number of common or conserved intervals, SAD etc. In their initial definitions, all these measures suppose that genomes contain no duplicates. However, we now know that genes can be duplicated within the same genome. One possible approach to overcome this difficulty is to establish a one-to-one correspondence (i.e. a matching) between genes of both genomes, where the correspondence is chosen in order to optimize the studied measure. Then, after a gene relabeling according to this matching and a deletion of the unmatched signed genes, two genomes without duplicates are obtained and the measure can be computed.

In this paper, we are interested in three measures (number of breakpoints, number of common intervals and number of conserved intervals) and three models of matching (exemplar model, maximum matching model and non maximum matching model). We prove that, for each model and each measure, computing a matching between two genomes that optimizes the measure is APX-Hard. We show that this result remains true even for two genomes G1 and G2 such that G1 contains no duplicates and no gene of G2 appears more than twice. Therefore, our results extend those of [5,6,8]. Finally, we propose a 4-approximation algorithm for a measure closely related to the number of breakpoints, the number of adjacencies, under the maximum matching model, in the case where genomes contain the same number of duplications of each gene.

Keywords

genome rearrangement APX-Hardness duplicates breakpoints adjacencies common intervals conserved intervals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoretical Computer Science 237(1-2), 123–134 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angibaud, S., Fertin, G., Rusu, I., Vialette, S.: A general framework for computing rearrangement distances between genomes with duplicates. Journal of Computational Biology 14(4), 379–393 (2007)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bafna, V., Pevzner, P.: Sorting by reversals: genome rearrangements in plant organelles and evolutionary history of X chromosome. Molecular Biology and Evolution, 239–246 (1995)Google Scholar
  4. 4.
    Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bryant, D.: The complexity of calculating exemplar distances. In: Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignement, and the Evolution of Gene Families, pp. 207–212. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  6. 6.
    Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Genomes containing duplicates are hard to compare. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 783–790. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Chen, Z., Fu, B., Xu, J., Yang, B., Zhao, Z., Zhu, B.: Non-breaking similarity of genomes with gene repetitions. In: CPM 2007. LNCS, vol. 4580, pp. 119–130. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 291–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Crochemore, M., Hermelin, D., Landau, G.M., Vialette, S.: Approximating the 2-interval pattern problem. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 426–437. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Goldstein, A., Kolman, P., Zheng, Z.: Minimum common string partition problem: Hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 473–484. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Kolman, P., Waleń, T.: Reversal distance for strings with duplicates: Linear time approximation using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 279–289. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Li, W., Gu, Z., Wang, H., Nekrutenko, A.: Evolutionary analysis of the human genome. Nature (409), 847–849 (2001)CrossRefGoogle Scholar
  13. 13.
    Marron, M., Swenson, K.M., Moret, B.M.E.: Genomic distances under deletions and insertions. Theoretical Computer Science 325(3), 347–360 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43(3), 425–440 (1991)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)CrossRefGoogle Scholar
  16. 16.
    Sankoff, D., Haque, L.: Power boosts for cluster tests. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 121–130. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Tang, J., Moret, B.M.E.: Phylogenetic reconstruction from gene-rearrangement data with unequal gene content. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 37–46. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sébastien Angibaud
    • 1
  • Guillaume Fertin
    • 1
  • Irena Rusu
    • 1
  1. 1.Laboratoire d’Informatique de Nantes-Atlantique (LINA), FRE CNRS 2729Université de NantesNantesFrance

Personalised recommendations