Local Approximation Algorithms for Scheduling Problems in Sensor Networks

  • Patrik Floréen
  • Petteri Kaski
  • Topi Musto
  • Jukka Suomela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4837)

Abstract

We study fractional scheduling problems in sensor networks, in particular, sleep scheduling (generalisation of fractional domatic partition) and activity scheduling (generalisation of fractional graph colouring). The problems are hard to solve in general even in a centralised setting; however, we show that there are practically relevant families of graphs where these problems admit a local distributed approximation algorithm; in a local algorithm each node utilises information from its constant-size neighbourhood only. Our algorithm does not need the spatial coordinates of the nodes; it suffices that a subset of nodes is designated as markers during network deployment. Our algorithm can be applied in any marked graph satisfying certain bounds on the marker density; if the bounds are met, guaranteed near-optimal solutions can be found in constant time, space and communication per node. We also show that auxiliary information is necessary—no local algorithm can achieve a satisfactory approximation guarantee on unmarked graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Computing 24(6), 1259–1277 (1995)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cardei, M., MacCallum, D., Cheng, M.X., Min, M., Jia, X., Li, D., Du, D.Z.: Wireless sensor networks with energy efficient organization. Journal of Interconnection Networks 3(3–4), 213–229 (2002)CrossRefGoogle Scholar
  3. 3.
    Floréen, P., Kaski, P., Suomela, J.: A distributed approximation scheme for sleep scheduling in sensor networks. In: SECON 2007. Proc. 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, San Diego, CA, June 2007, pp. 152–161. IEEE, Piscataway (2007)Google Scholar
  4. 4.
    Koushanfar, F., Taft, N., Potkonjak, M.: Sleeping coordination for comprehensive sensing using isotonic regression and domatic partitions. In: Proc. 25th Conference on Computer Communications (INFOCOM, Barcelona, April 2006), IEEE, Piscataway, NJ (2006)Google Scholar
  5. 5.
    Moscibroda, T., Wattenhofer, R.: Maximizing the lifetime of dominating sets. In: IPDPS 2005. Proc. 19th IEEE International Parallel and Distributed Processing Symposium, Denver, CO, IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  6. 6.
    Pemmaraju, S.V., Pirwani, I.A.: Energy conservation via domatic partitions. In: MobiHoc 2006. Proc. 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Florence, pp. 143–154. ACM Press, New York (2006)CrossRefGoogle Scholar
  7. 7.
    Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-hop wireless network performance. Wireless Networks 11(4), 471–487 (2005)CrossRefGoogle Scholar
  8. 8.
    Feige, U., Halldórsson, M.M., Kortsarz, G., Srinivasan, A.: Approximating the domatic number. SIAM Journal on Computing 32(1), 172–195 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. Journal of the ACM 41(5), 960–981 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Suomela, J.: Locality helps sleep scheduling. In: WSW 2006. Working Notes of the Workshop on World-Sensor-Web: Mobile Device-Centric Sensory Networks and Applications, Boulder, CO, October 2006, pp. 41–44 (2006), http://www.sensorplanet.org/wsw2006/
  11. 11.
    Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: SODA 2006. Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithm, Miami, FL, January 2006, pp. 980–989. ACM Press, New York (2006)CrossRefGoogle Scholar
  13. 13.
    Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. Journal of the ACM 32(1), 130–136 (1985)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM Journal on Computing 34(6), 1302–1323 (2005)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. Journal of Algorithms 26(2), 238–274 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jiang, T., Wang, L.: An approximation scheme for some Steiner tree problems in the plane. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 414–422. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    Suomela, J.: Approximability of identifying codes and locating-dominating codes. Information Processing Letters 103(1), 28–33 (2007)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kuhn, F., Nieberg, T., Moscibroda, T., Wattenhofer, R.: Local approximation schemes for ad hoc and sensor networks. In: DIALM-POMC 2005. Proc. Joint Workshop on Foundations of Mobile Computing, Cologne, September 2005, pp. 97–103. ACM Press, New York (2005)CrossRefGoogle Scholar
  19. 19.
    Ghys, É.: Les groupes hyperboliques. Astérisque 189–190, 203–238 (1990), [Séminaire Bourbaki, vol. 1989/90, Exp. No. 722]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Patrik Floréen
    • 1
  • Petteri Kaski
    • 1
  • Topi Musto
    • 1
  • Jukka Suomela
    • 1
  1. 1.Helsinki Institute for Information Technology HIIT Department of Computer ScienceUniversity of HelsinkiFinland

Personalised recommendations