Cements and Ceramics

  • Gottfried Schmalz
  • H. Stanley
  • Birger Thonemann


Cements and ceramics are mainly inorganic, non-metallic, hydrophilic materials, which have been used in different dental applications for a long time. In this chapter, information on the composition, setting reaction and release of substances from these materials is provided as the basis for a detailed review of their mainly local toxicity. Besides zinc phosphate and glass ionomer cements, materials based on zinc oxide and eugenol and on calcium hydroxide are covered. Emphasis is placed on the influence of the biocompatibility on the choice of the material in each individual patient and on new and established bioactive materials; e.g. for dentin regeneration. For ceramics, conventional materials (feldspathic type) and more recently developed materials based on zircon dioxide are reviewed. The question of radioactive radiation of ceramics is also discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambard, A. J., Mueninghoff, L.: Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont 15, 321–328 (2006).Google Scholar
  2. 2.
    Bauer, C.M., Kunzelmann, K.-H., Hickel, R.: Silikophosphat- und Glasionomerzemente – eine Amalgamalternative? [Silicophosphate and glass ionomer cements – are they an alternative to amalgam?] Dtsch Zahnärztl Z 51, 339–341 (1996).Google Scholar
  3. 3.
    Brännström, M., Vojinovic, O., Nordenvall, K.J.: Bacteria and pulpal reactions under silicate cement restorations. J Prosthet Dent 41, 290–295 (1979).Google Scholar
  4. 4.
    Brown, W.E., Chow, L.C.: Dental restorative cement pastes. U.S. patent 4,518, 430 (1988).Google Scholar
  5. 5.
    Craig, R.G. (ed): Restorative Dental Materials, 10th edn. Mosby Year Book, St. Louis 1997.Google Scholar
  6. 6.
    Dahl, B.L., Tronstad, L., Spangberg, L.: Biological tests of a silicophosphate cement. J Oral Rehabil 2, 249–257 (1975).Google Scholar
  7. 7.
    Klötzer, W.T., Langeland, K.: Tierexperimentelle Prüfung von Materialien und Methoden der Kronen- und Brückenprothetik. [Animal testing on materials and methods for being used in crown and bridge restorations] Schweiz Monatsschr Zahnheilkd 83, 163–244 (1973).Google Scholar
  8. 8.
    Leirskar, J., Helgeland, K.: Toxicity of special dental cements in a cell culture system. Scand J Dent Res 85, 471–479 (1977).Google Scholar
  9. 9.
    Oilo, G.: Linear dimensional changes during setting of two polycarboxylate cements. J Oral Rehabil 3, 161–166 (1976).Google Scholar
  10. 10.
    Oilo, G.: Luting cements: a review and comparison. Int Dent J 41, 81–88 (1991).Google Scholar
  11. 11.
    Wilson, A.D., Crisp, S., Lewis, B.G.: The aqueous erosion of silicophosphate cements. J Dent 10, 187–197 (1982).Google Scholar
  12. 12.
    Blosser, R.L., Rupp, N.W., Stanley, H.R., Bowen, R.L.: Pulpal and microorganism responses to two experimental dental bonding systems. Dent Mater 5, 140–144 (1989).Google Scholar
  13. 13.
    Boyd, J.B., Mitchel, D.F.: Reaction of subcutaneous connective tissue of rats to implanted dental cements. J Prosthet Dent 11, 174 (1961).Google Scholar
  14. 14.
    Brännström, M., Nyborg, H.: The presence of bacteria in cavities filled with silicate cement and composite resin materials. Swed Dent J 64, 149–155 (1971).Google Scholar
  15. 15.
    Brännström, M., Vojinovic, O.: Response of the dental pulp to invasion of bacteria around three filling materials. ASDC J Dent Child 43, 83–89 (1976).Google Scholar
  16. 16.
    Dubner, R., Stanley, H.R.: Reaction of the human dental pulp to temporary filling materials. Oral Surg 15, 1009–1017 (1962).Google Scholar
  17. 17.
    Gilmore, H.W.: Textbook of Operative Dentistry. Mosby Year Book, St. Louis 1967, p 149.Google Scholar
  18. 18.
    Hanks, C.T., Anderson, M., Craig, R.G.: Cytotoxic effects of dental cements on two cell culture systems. J Oral Pathol 10, 101–112 (1981).Google Scholar
  19. 19.
    Hanks, C.T., Wataha, J.C., Sun, Z.: In vitro models of biocompatibility: a review. Dent Mater 12, 186–193 (1996).Google Scholar
  20. 20.
    Klötzer, W.T.: Die Reaktion der Gingiva in Kontakt mit zahnärztlichen Materialien. [The reaction of the gingiva in contact with dental materials] Dtsch Zahnärztl Z 28, 1181–1191 (1973).Google Scholar
  21. 21.
    Pameijer, C.H., Stanley, H.R.: Primate pulp response to anhydrous Chembond. J Dent Res 63, 171 (1984).Google Scholar
  22. 22.
    Pameijer, C.H., Stanley, H.R.: Biocompatibility of a glass ionomer luting agent. Part II: Crown cementation. Am J Dent 4, 134–142 (1991).Google Scholar
  23. 23.
    Pameijer, C.H., Stanley, H.R.: Pulpal reaction to a dentin bonding agent. Am J Dent 8, 140–144 (1995).Google Scholar
  24. 24.
    Peyton, F.A., Anthony, D.H., Asgar, K., Charbeneau, G.T., Craig, R.G., Myers, G.E.: Restorative Dental Materials. Mosby Year Book, St. Louis 1960, pp 460–471. Google Scholar
  25. 25.
    Phillips, R.W.: Skinner’s Science of Dental Materials, 9th edn. W.B. Saunders, Philadelphia 1991, pp 479–488.Google Scholar
  26. 26.
    Reeves, R., Stanley, H.R.: The relationship of bacterial penetration and pulpal pathosis in carious teeth. Oral Surg 22, 59–65 (1968).Google Scholar
  27. 27.
    Sayegh, F.S., Reed, A.J.: Tissue reactions to a new restorative material. J Prosthet Dent 22, 468–478 (1969).Google Scholar
  28. 28.
    Schmalz, G., Garhammer, P., Schweikl, H.: A commercially available cell culture device modified for dentin barrier tests. J Endod 22, 249–252 (1996).Google Scholar
  29. 29.
    Schmalz, G., Hiller, K.-A., Aslan-Dörter, F.: New developments in the filter test system for cytotoxicity testing. J Mater Sci Mater Medicine 5, 43–51 (1994).Google Scholar
  30. 30.
    Schmalz, G., Schuster, U., Nützel, K., Schweikl, H.: An in vitro pulp chamber with three-dimensional cell cultures. J Endod 25, 24–29 (1999).Google Scholar
  31. 31.
    Schmalz, G., Sharaf, M.: Die Verwendung unterschiedlicher Zellarten im Agar-Diffusions-Test. [The use of different cell lines in the agar diffusion test] Z Zahnärztl Implantol 4, 240–245 (1988).Google Scholar
  32. 32.
    Schmalz, G., Schuster, U., Koch, A., Schweikl, H.: Cytotoxicity of low pH dentin-bonding agents in a dentin barrier test in vitro. J Endod 28, 188–192 (2002).Google Scholar
  33. 33.
    Servais, G.F., Cartz, L.: Structure of zinc phosphate dental cement. J Dent Res 50, 613–620 (1971).Google Scholar
  34. 34.
    Shen, C.: Dental cements for bonding applications. In: Anusavice, K.J. (ed): Phillips’ Science of Dental Materials, 10th edn. W.B. Saunders, Philadelphia 1996, pp 555–556.Google Scholar
  35. 35.
    Smith, D.C.: Past, present and future of dental cements. In: Craig, R.G. (ed): Dental Materials Review. University of Michigan School of Dentistry, Ann Arbor 1977, pp 53–55.Google Scholar
  36. 36.
    Smith, D.C., Norman, R.D., Swartz, M.L.: Dental cements: current status and future prospects. In: Reese, J.A., Valega T.M. (eds): Restorative Dental Materials – An Overview (FDI). Quintessence Publishing (on behalf of FDI), London 1985, pp 33–74. Google Scholar
  37. 37.
    Stanley, H.R.: Human pulp response to restorative dental procedures, revised edn. Storter Printing, Gainesville, Florida, 1981, pp 61–64. Google Scholar
  38. 38.
    Stanley, H.R.: The relationship of bacterial penetration and pulpal lesions. In: Anusavice, K.J. (ed): Quality Evaluation of Dental Restorations. Quintessence, Chicago 1989, pp 303–323. Google Scholar
  39. 39.
    Stanley, H.R.: Biologic responses of dentin and pulp to dental restorative procedures: scientific background and therapeutic recommendations. In: Hardin, J.F. (ed): Clark’s Clinical Dentistry, vol IV, revised edn. Lippincott, Philadelphia 1990, pp 14–15. Google Scholar
  40. 40.
    Stanley, H.R.: Local and systemic responses to dental composites and glass ionomers. Adv Dent Res 6, 55–64 (1992).Google Scholar
  41. 41.
    Stanley, H.R.: Dental iatrogenesis. Int Dent J 44, 9–11 (1994).Google Scholar
  42. 42.
    Stanley, H.R.: Biocompatibility of dental materials. In: Anusavice, K.J. (ed): Phillips’ Science of Dental Materials, 10th edn. W.B. Saunders, Philadelphia 1996, pp 75–109.Google Scholar
  43. 43.
    Stanley, H.R., Bowen, R.L., Cobb, E.W.: Pulp responses to a dentin and enamel adhesive bonding procedure. Oper Dent 13, 107–110 (1988).Google Scholar
  44. 44.
    Zmener, O., Dominguez, F.V.: Tissue response to a glass ionomer used as an endodontic cement. A preliminary study in dogs. Oral Surg Oral Med Oral Pathol 56, 198–205 (1983). Google Scholar
  45. 45.
    Zyskind, K.: Periodontal health as related to preformed crowns: report of case. J Dent Child 56, 385–387 (1989).Google Scholar
  46. 46.
    Andersson, O.H., Dahl, J.E.: Aluminium release from glass ionomer cements during early water exposure in vitro. Biomaterials 15, 882–888 (1994).Google Scholar
  47. 47.
    Aranha, A. M., Giro, E. M., Souza, P. P., Hebling, J., de Souza Costa, C. A.: Effect of curing regime on the cytotoxicity of resin-modified glass ionomer lining cements applied to an odontoblast-cell line. Dent Mater 22, 864–869 (2006).Google Scholar
  48. 48.
    Bapna, M.S., Mueller, H.J.: Leaching from glass ionomer cements. J Oral Rehabil 21, 577–583 (1994).Google Scholar
  49. 49.
    Barry, T.I., Clinton, D.J., Wilson, A.D.: The structure of a glass ionomer cement and its relationship to the setting process. J Dent Res 58, 1072–1079 (1979).Google Scholar
  50. 50.
    Bauer, J.G., Al-Rubayi, A.: Tissue response to direct filling materials. J Prosthet Dent 58, 584–589 (1987).Google Scholar
  51. 51.
    Beetke, E., Bening, B., Sobkowiak, E.A., Bienengräber, V.: Zur Frage der Gewebeverträglichkeit von Sanal und Calcinat. [Tissue compatibility of Sanal and Calcinat] Zahn-Mund-Kieferheilkd 62, 243 (1974).Google Scholar
  52. 52.
    Bergenholtz, G., Cox, C.F., Loesche, W.J., Syed, S.: Bacterial leakage around dental restorations: its effect on the dental pulp. J Oral Pathol 11, 439–450 (1982).Google Scholar
  53. 53.
    Blackman, R., Gross, M., Seltzer, S.: An evaluation of the biocompatibility of a glass ionomer-silver cement in rat connective tissue. J Endod 15, 76–79 (1989).Google Scholar
  54. 54.
    Bourke, A.M., Walls, A.W., McCabe, J.F.: Light-activated glass polyalkenoate (ionomer) cements: the setting reaction. J Dent 20, 115–120 (1992).Google Scholar
  55. 55.
    Burke, F.J.T., Cheung, S.W., Mjör, I.A., et al.: Restoration longevity and analysis of reasons for the placement and replacement of restorations provided by vocational dental practitioners and their trainers in the United Kingdom. Quintessence Int 30, 234–242 (1999).Google Scholar
  56. 56.
    Burrow, M.F., Nopnakeepong, U., Phukkanon, S.: A comparison of microtensile bond strength of several dentin bonding systems to primary and permanent dentin. Dent Mater 18, 239–245 (2002).Google Scholar
  57. 57.
    Caughman, W.F., Caughman, G.B., Dominy, W.T., Schuster, G.S.: Glass ionomer and composite resin cements: effects on oral cells. J Prosthet Dent 63, 513–521 (1990).Google Scholar
  58. 58.
    Cooper, I.R.: The response of the human dental pulp to glass ionomer cements. Int Endod J 13, 76–88 (1980).Google Scholar
  59. 59.
    Council on Dental Materials, Instruments and Equipment. Reported sensitivity to glass ionomer luting cements. J Am Dent Assoc 109, 476 (1984).Google Scholar
  60. 60.
    Costa, C.A., Giro, E.M., do Nascimento, A.B., Teixeira, H.M., Hebling, J.: Short-term evaluation of the pulp-dentin complex response to a resin-modified glass ionomer cement and a bonding agent applied in deep cavities. Dent Mater 19, 739–746 (2003).Google Scholar
  61. 61.
    Cox, C.F., Erickson, R.L., Glasspoole, E.: Histologic pulp response of a new tri-cure glass ionomer. J Dent Res 72, 348, abstract 1960 (1993).Google Scholar
  62. 62.
    Culbertson, B.M.: New polymeric materials for use in glass ionomer cements. J Dent 34, 556–565 (2006).Google Scholar
  63. 63.
    De Munck, J., van Meerbeek, B., Yoshida, Y., Inou, S., Suzuki, K., Lambrechts, P.: Four-year water degradation of resin-modified glass ionomer adhesive bonded to dentin. Eur J Oral Sci 112, 73–83 (2004).Google Scholar
  64. 64.
    De Schepper, E.J., Thrasher, M.R., Thurmond, B.A.: Antibacterial effects of light-cured liners. Am Dent J 2, 74–76 (1989).Google Scholar
  65. 65.
    De Schepper, E.J., White, R.R., von der Lehr, W.: Antibacterial effects of glass ionomers. Am Dent J 2, 51–56 (1989).Google Scholar
  66. 66.
    De Souza Costa, C.A., Hebling, J., Garcia-Godoy, F., Hanks, C.T.: In vitro cytotoxicity of five glass ionomer cements. Biomaterials 24, 3853–3858 (2003).Google Scholar
  67. 67.
    De Souza Costa, C.A., Teixeira, H.M., do Nascimento, A.B., Hebling, J.: Biocompatibility of resin-based dental materials applied as liners in deep cavities prepared in human teeth. J Biomed Mater Res, part B, 175–184 (2006).Google Scholar
  68. 68.
    Deux, D., Bonin, P., Boivin, R., Poulard, J.: Etude experimentale de l’influence d’un fond de cavité à base de verre ionomere photopolymerisable sur la pression et la temperature pulpaires. Rev Fr Endod 9, 25–30 (1990).Google Scholar
  69. 69.
    Dogon, I.L., van Leeuwen, M.J., Heeley, J.D.: Biological investigation of a new light cured glass ionomer restorative material. J Dent Res 71, 524 (1992).Google Scholar
  70. 70.
    Do Nascimento, A.B., Fontana, U.F., Teixeira, H.M., Costa, C.A.: Biocompatibility of a resin-modified glass ionomer cement applied as pulp capping in human teeth. Am J Dent 13, 28–34 (2000).Google Scholar
  71. 71.
    El Mallakh, B.F., Sarkar, N.K.: Fluoride release from glass ionomer cements in de-ionized water and artificial saliva. Dent Mater 6, 118–122 (1990).Google Scholar
  72. 72.
    Ersev, H., Schmalz, G., Bayirli, G., Schweikl, H.: Cytotoxic and mutagenic potencies of various root canal filling materials in eukaryotic and prokaryotic cells in vitro. J Endod 25, 359–363 (1999).Google Scholar
  73. 73.
    Felton, D., Cox, C.F., Odom, M., Kanoy, B.E.: Pulpal response to chemically cured and experimental light-cured glass ionomer cavity liners. J Prosthet Dent 65, 704–712 (1991).Google Scholar
  74. 74.
    Forss, H.: Release of fluoride and other elements from light-cured glass ionomers in neutral and acidic conditions. J Dent Res 72, 1257–1262 (1993).Google Scholar
  75. 75.
    Forss, H., Jokinen, J., Spets-Happonen, S., Seppä, L., Luoma, H.: Fluoride and mutans streptococci in plaque grown on glass ionomer and composite. Caries Res 25, 454–458 (1991).Google Scholar
  76. 76.
    Forsten, L.: Short- and long-term fluoride release from glass ionomers and other fluoride-containing filling materials in vitro. Scand J Dent Res 98, 179–185 (1990).Google Scholar
  77. 77.
    Forsten, L.: Fluoride release and uptake by glass ionomers. Scand J Dent Res 99, 241–245 (1991).Google Scholar
  78. 78.
    Friedl, K.-H., Schmalz, G., Hiller, K.-A., Shams, M.: Resin-modified glass ionomer cements: fluoride release and influence on Streptococcus mutans growth. Eur J Oral Sci 105, 81–85 (1997).Google Scholar
  79. 79.
    Gaintantzopoulou, M.D., Willis, G.P., Kafrawy, A.H.: Pulp reactions to light-cured glass ionomer cements. Am J Dent 7, 39–42 (1994).Google Scholar
  80. 80.
    Galler, K., Hiller, K.-A., Ettl, T., Schmalz, G.: Selective influence of dentin thickness upon cytotoxicity of dentin contacting materials. J Endod 31, 396–399 (2005).Google Scholar
  81. 81.
    Geurtsen, W.: Substances released from dental resin composites and glass ionomer cements. Eur J Oral Sci 106, 687–695 (1998).Google Scholar
  82. 82.
    Geurtsen, W., Bubeck, P., Leyhausen, G., Garcia Godoy, F.: Effects of extraction media upon fluoride release from a resin-modified glass ionomer cement. Clin Oral Investig 2, 143–146 (1998).Google Scholar
  83. 83.
    Geurtsen, W., Spahl, W., Leyhausen, G.: Residual monomer/additive release and variability in cytotoxicity of light-curing glass ionomer cements and compomers. J Dent Res 77, 2012–2019 (1998).Google Scholar
  84. 84.
    Hannig, M., Albers, H.K., Bössmann, K.: Die Pulpaverträglichkeit von Glasionomerzementen. [Pulp compatibility of glass ionomer cements] Zahnärztl Welt/Reform 101, 272–275 (1992).Google Scholar
  85. 85.
    Hantson, P.H., Mahieu, P., Gersdorff, M., Sindic, C.J.M., Lauwerys, R.: Encephalopathy with seizures after use of aluminium-containing bone cement. Lancet 344, 1647 (1994).Google Scholar
  86. 86.
    Hatibovic-Kofman, S., Koch, G.: Fluoride release from glass ionomer cement in vivo and in vitro. Swed Dent J 15, 253–258 (1991).Google Scholar
  87. 87.
    Hatton, P.V., Hurrell-Gillingham, K., Brook, I.M.: Biocompatibility of glass ionomer bone cements. J Dent 34, 598–601 (2006).Google Scholar
  88. 88.
    Heil, J., Reifferscheid, G., Waldmann, P., Leyhausen, G., Geurtsen, W.: Genotoxicity of dental materials. Mutat Res 368, 181–194 (1996).Google Scholar
  89. 89.
    Helms, J., Geyer, G., Zöllner, W., Gasser, O.: Bone replacement part made of glass ionomer cement. U.S. patent 5.314.474 (1994).Google Scholar
  90. 90.
    Homayoun, R., Ajagbe, O.: Biocompatibility of glass ionomer versus zinc phosphate. J Dent Res 72, 367 (1993).Google Scholar
  91. 91.
    Hørsted-Bindslev, P.: Fluoride release from alternative dental materials. J Dent 22 (suppl 1), 17–20 (1994).Google Scholar
  92. 92.
    Hørsted-Bindslev, P., Larsen, M.J.: Release of fluoride from conventional and metal-reinforced glass ionomer cements. Scand J Dent Res 98, 451–455 (1990).Google Scholar
  93. 93.
    Hørsted-Bindslev, P., Larsen, M.J.: Release of fluoride from light cured lining materials. Scand J Dent Res 99, 86–88 (1991).Google Scholar
  94. 94.
    Irie, M., Suzuki, K.: The effect of primers on bond strength of polyacid-modified resin composites (compomers). Dent Mater J 18, 108–115 (1999).Google Scholar
  95. 95.
    Jonck, L.M., Grobbelaar, C.J., Strating, H.G.: Biological evaluation of glass ionomer cement (Ketac-O) as an interface material in total joint replacement: a screening test. Clin Mater 4, 201–224 (1989).Google Scholar
  96. 96.
    Jonck, L.M., Grobbelaar, C.J.: Ionos bone cement (glass ionomer): an experimental and clinical evaluation in joint replacement. Clin Mater 6, 323–359 (1990).Google Scholar
  97. 97.
    Joshikawa, T., Hirasawa, M., Tosaki, S., Hirota, K.: Concentration of HEMA eluted from light-cured glass ionomer. J Dent Res 73, 133 (abstract) (1994).Google Scholar
  98. 98.
    Kan, K.C., Messer, L.B., Messer, H.H.: Variability in cytotoxicity and fluoride release of resin-modified glass-ionomer cements. J Dent Res 76, 1502–1507 (1997).Google Scholar
  99. 99.
    Kanchanavasita, W., Pearson, G.J., Anstice, H.M.: Temperature rise in ion-leachable cements during setting reaction. Biomaterials 16, 1261–1265 (1995).Google Scholar
  100. 100.
    Kawahara, H., Imanishi, Y., Oshima, H.: Biological evaluation on glass ionomer cement. J Dent Res 58, 1080–1086 (1979).Google Scholar
  101. 101.
    Kawase, T., Suzuki, A.: Studies on the transmembrane migration of fluoride and its effects on proliferation of L-929 fibroblasts (L-cells) in vitro. Arch Oral Biol 34, 103–107 (1989).Google Scholar
  102. 102.
    Klötzer, W.T.: Pulp reactions to a glass ionomer cement. J Dent Res 54, 678, abstract 75 (1975).Google Scholar
  103. 103.
    Kuhn, A.T., Wilson, A.D.: The dissolution mechanism of silicate and glass ionomer dental cements. Biomaterials 6, 378–382 (1985).Google Scholar
  104. 104.
    Koulaouzidou, E.A., Papazisis, K.T., Economides, N.A., Beltes, P., Kortsaris, A.H.: Antiproliferative effect of mineral trioxide aggregate, zinc oxide-eugenol cement, and glass ionomer cement against three fibroblastic cell lines. J Endod 31, 44–46 (2005).Google Scholar
  105. 105.
    Li, Y., Noblitt, T.W., Dunipace, A.J., Stookey, G.K.: Evaluation of mutagenicity of restorative dental materials using the Ames Salmonella/microsome test. J Dent Res 69, 1188–1192 (1990).Google Scholar
  106. 106.
    Min, K.-S., Kim, H.-I., Park, H.-J., Pi, S.-H., Hong, C.-U, Kim, E.-C.: Human pulp cells response to Portland cement in vitro. J Endod 33, 163–166 (2007).Google Scholar
  107. 107.
    Miyazaki, M., Rikuta, A., Iwasaki, K., Ando, S., Onose, H.: Influence of environmental conditions on bond strength of a resin-modified glass ionomer. Am J Dent 10, 287–290 (1997).Google Scholar
  108. 108.
    Mjör, I.A.: Problems and benefits associated with restorative materials: side-effects and long-term cost. Adv Dent Res 6, 7–16 (1992).Google Scholar
  109. 109.
    Mjör, I.A.: The reasons for replacement and the age of failed restorations in general dental practice. Acta Odontol Scand 55, 58–63 (1997).Google Scholar
  110. 110.
    Mjör, I.A., Jokstad, A.: Five-year study of Class II restorations in permanent teeth using amalgam, glass polyalkenoate (ionomer) cermet and resin-based composite materials. J Dent 21, 338–343 (1993).Google Scholar
  111. 111.
    Mjör, I.A., Nordahl, I., Tronstad, L.: Glass ionomer cements and dental pulp. Endod Dent Traumatol 7, 59 (1991).Google Scholar
  112. 112.
    Momoi, Y., McCabe, J.F.: Fluoride release from light-activated glass ionomer restorative cements. Dent Mater 9, 151–154 (1993).Google Scholar
  113. 113.
    Müller, J., Bruckner, G., Kraft, E., Hörz, W.: Reaction of cultured pulp cells to eight different cements based on glass ionomers. Dent Mater 6, 172 (1990).Google Scholar
  114. 114.
    Müller, J., Hörz, W., Bruckner, G., Kraft, E.: An experimental study on the biocompatibility of lining cements based on glass ionomer as compared with calcium hydroxide. Dent Mater 6, 35–40 (1990).Google Scholar
  115. 115.
    Nakanuma, K., Hayakawa, T., Tomita, T., Yamazaki, M.: Effect of the application of dentin primers and a dentin bonding agent on the adhesion between the resin-modified glass ionomer cement and dentin. Dent Mater 14, 281–286 (1998).Google Scholar
  116. 116.
    Nicholson, J.W., Braybook, J.H., Wasson, E.A.: The biocompatibility of glass-poly(alkenoate) (glass ionomer) cements: a review. J Biomater Sci Polymer End 2, 277–285 (1991).Google Scholar
  117. 117.
    Nourollahi, M., Meryon, S.D.: The antibacterial properties of four elements released from dental restorative materials. Int Endod J 22, 9–16 (1989).Google Scholar
  118. 118.
    Oliva, A., Della Ragione, F., Salerno, A., Riccio, V., Tartaro, G., Cozzolino, A., D’Amato, S., Pontoni, G., Zappia, V.: Biocompatibility studies on glass ionomer cements by primary cultures of human osteoblasts. Biomaterials 17, 1351–1356 (1996).Google Scholar
  119. 119.
    Palenik, C.J., Behnen, M.J., Setcos, J.C., Miller, C.H.: Inhibition of microbial adherence and growth by various glass ionomers in vitro. Dent Mater 8, 16–20 (1992).Google Scholar
  120. 120.
    Pameijer, C.H., Segal, E., Richardson, J.: Pulpal response to glass ionomer cements in primates. J Prosthet Dent 46, 36–40 (1981).Google Scholar
  121. 121.
    Pameijer, C.H., Stanley, H.R., Ecker, G.: Biocompatibility of a glass ionomer luting agent. Part II: crown cementation. Am J Dent 4, 134–142 (1991).Google Scholar
  122. 122.
    Paterson, R.C., Watts, A.: The response of the rat molar pulp to glass ionomer cement. Brit Dent J 151, 228–230 (1981).Google Scholar
  123. 123.
    Peltola, M., Salo, T., Oikarinen, K.: Toxic effects of various retrograde root filling materials on gingival fibroblast and rat sarcoma cells. Endod Dent Traumatol 8, 120–124 (1992).Google Scholar
  124. 124.
    Plant, C.G., Browne, R.M., Knibbs, P.J., Britton, A.S., Sorahan, T.: Pulpal effects of glass ionomer cements. Int Endod J 17, 51–59 (1984).Google Scholar
  125. 125.
    Plant, C.G., Tobias, R.S., Browne, R.M., Sorahan, T., Rippin, J.W.: Toxicity testing of inlay cements. Clin Mater 1, 291–301 (1986).Google Scholar
  126. 126.
    Plant, C.G., Knibbs, P.J., Tobias, R.S., Britton, A.S., Rippin, J.W.: Pulpal response to a glass ionomer luting cement. Brit Dent J 165, 54–58 (1988).Google Scholar
  127. 127.
    Prati, C., Fava, F., Di Gioia, D., Selighini, M., Pashley, D.H.: Antibacterial effectiveness of dentin bonding systems. Dent Mater 9, 338–343 (1993).Google Scholar
  128. 128.
    Prati, C., Fava, F., Selighini, M., Pashley, D.H.: Antibacterial activity of restorative materials. J Dent Res 72, 127 (abstract) (1993).Google Scholar
  129. 129.
    Ribeiro, D.A., Marques, M.E.A., Salvadori, D.M.F.: Genotoxicity and cytotoxicity of glass ionomer cements on Chinese hamster ovary (CHO) cells. J Mater Sci: Mater Med 17, 495–500 (2006).Google Scholar
  130. 130.
    Renard, J.L., Felten, D., Bequet, D.: Post-operative osteoneurosurgery aluminium encephalopathy. Lancet 344, 63–64 (1994).Google Scholar
  131. 131.
    Ruyter, I.E., Sjovik Kleven, I.: Formaldehyde release from light-cured glass ionomer restorative materials. J Dent Res 73, 293 (abstract) (1994).Google Scholar
  132. 132.
    Sarkar, N.K., El Mallakh, B., Graves, R.: Silver release from metal reinforced glass ionomers. Dent Mater 4, 103–104 (1988).Google Scholar
  133. 133.
    Saxton, C.A., Harrap, G.J., Lloyd, A.M.: The effect of dentifrices containing zinc citrate on plaque growth and oral zinc levels. J Clin Periodontol 13, 301–306 (1986).Google Scholar
  134. 134.
    Souza, P.P.C., Andreza, M.F.A., Hebling, J., Giro, E.M.A., De Souza, C.A.: In vitro cytotoxicity and in vivo biocompatibility of contemporary resin-modified glass ionomer cements. Dent Mater 22, 838–844 (2006).Google Scholar
  135. 135.
    Scherer, W., Lippman, N., Kaim, J.: Antimicrobial properties of glass ionomer cements and other restorative materials. Oper Dent 14, 77–81 (1989).Google Scholar
  136. 136.
    Schmalz, G.: Antimikrobielle Eigenschaften eines Zinkoxidphosphat-Zementes und eines Glasionomer-Zementes mit und ohne Silberzusatz. [Antimicrobial properties of a zinc phosphate and a glass ionomer cement with and without silver admixture] Dtsch Zahnärztl Z 42, 628–632 (1987).Google Scholar
  137. 137.
    Schmalz, G.: Agar overlay method. Int Endod J 21, 59–66 (1988).Google Scholar
  138. 138.
    Schmalz, G., Garhammer, P., Schweikl, H.: A commercially available cell culture device modified for dentin barrier tests. J Endod 22, 249–252 (1996).Google Scholar
  139. 139.
    Schmalz, G., Hiller, K.-A., Aslan-Dörter, F.: New developments in the filter test system for cytotoxicity testing. J Mat Sci Mat in Med 5, 43–51 (1994).Google Scholar
  140. 140.
    Schmalz, G., Schmalz, C., Rotgans, J.: Pulp tolerance of glass ionomer and zinc oxide-phosphate cements. Dtsch Zahnärztl Z 41, 806–812 (1986).Google Scholar
  141. 141.
    Schmalz, G., Schuster, U., Pfeifer, S.: Cytotoxicity testing of glass ionomer cements using transfected pulp derived cells. J Dent Res 79, 431 (2000).Google Scholar
  142. 142.
    Schmalz, G., Thonemann, B., Riedel, M., Elderton, R.J.: Biological and clinical investigations of a glass ionomer base material. Dent Mater 10, 4–13 (1994).Google Scholar
  143. 143.
    Schuster, U., Schmalz, G., Thonemann, B., Mendel, N., Metzl, C.: Cytotoxicity testing with three-dimensional cultures of transfected pulp-derived cells. J Endod 27, 259–265 (2001).Google Scholar
  144. 144.
    Seppä, L., Forss, H., Ogaard, B.: The effect of fluoride application on fluoride release and the antibacterial action of glass ionomers. J Dent Res 72, 1310–1314 (1993).Google Scholar
  145. 145.
    Sidhu, S.K., Schmalz, G.: The biocompatibility of glass ionomer cement materials. Am J Dent 14, 387–396 (2001).Google Scholar
  146. 146.
    Six, N., Lasfargues, J.J., Goldberg, M.: In vivo study of the pulp reaction to Fuji IX, a glass ionomer cement. J Dent 28, 413–422 (2000).Google Scholar
  147. 147.
    Smith, D.C., Ruse, N.D.: Activity of glass ionomer cements during setting and its relation to pulp sensitivity. J Am Dent Assoc 112, 654–657 (1986).Google Scholar
  148. 148.
    Stanley, H.R.: Local and systemic responses to dental composites and glass ionomers. Adv Dent Res 6, 55–64 (1992).Google Scholar
  149. 149.
    Steinbrunner, R.L., Setcos, J.C., Kafrawy, A.H.: Connective tissue reactions to glass ionomer cements and resin components. Am J Dent 4, 281–284 (1991).Google Scholar
  150. 150.
    Svanberg, M., Mjör, I.A., Örstavik, D.: Mutans streptococci in plaque from margins of amalgam, composite and glass ionomer restorations. J Dent Res 69, 861–864 (1990).Google Scholar
  151. 151.
    Svanberg, M.: Class II amalgam restorations, glass ionomer tunnel restorations, and caries development on adjacent tooth surfaces: a three-year clinical study. Caries Res 26, 315–318 (1992).Google Scholar
  152. 152.
    Svendsen, O., Garthoff, G., Spielmann, H., Hensten-Pettersen, A., Jensen, J.C., Kuijpers, M.R., Leimgruber, R., Liebsch, M., Müller-Lierheim, W.G.K., Rydhög, G., Sauer, U.S., Schmalz, G., Sim, B., Stea, S.: Alternatives to the animal testing of medical devices. ATLA 24, 59–69 (1996).Google Scholar
  153. 153.
    Takahashi, K., Emilson, C.G., Birkhed, D.: Fluoride release in vitro from various glass ionomer cements and resin composites after exposure to NaF solutions. Dent Mater 9, 350–354 (1993).Google Scholar
  154. 154.
    Tam, L.E., Pulver, E., McComb, D., Smith, D.C.: Physical properties of calcium hydroxide and glass ionomer base and lining materials. Dent Mater 5, 145 (1989).Google Scholar
  155. 155.
    Tay, F.R., Smales, R.J., Ngo, H., Wei, S., Pashley, D.H.: Effect of different conditioning protocols on adhesion of a GIC to dentin. J Adhes Dent 3, 153–167 (2001).Google Scholar
  156. 156.
    Tassery, H., Remusat, M., Koubi, G., Pertot, W.J.: Comparison of the intraosseous biocompatibility of Vitremer and Super EBA by implantation into the mandible of rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 83, 602–608 (1997).Google Scholar
  157. 157.
    Thornton, J.B., Retief, D.H., Bradley, E.L.: Fluoride release from and tensile bond strength of Ketac-Fil and Ketac-Silver to enamel and dentin. Dent Mater 2, 241–245 (1986).Google Scholar
  158. 158.
    Tobias, R.S., Browne, R.M., Plant, C.G., Ingram, D.V.: Pulpal response to a glass ionomer cement. Brit Dent J 144, 345–350 (1978).Google Scholar
  159. 159.
    Tsanidis, V., Koulurides, T.: An in vitro model for assessment of fluoride uptake from glass ionomer cements by dentin and its effect on acid resistance. J Dent Res 71, 7–12 (1992).Google Scholar
  160. 160.
    Tyas, M.J.: Cariostatic effect of glass ionomer cement: a five year clinical study. Aust Dent J 36, 236–239 (1991).Google Scholar
  161. 161.
    Vajrabhaya, L., Korsuwannawong, S., Jantarat, J., Korre, S.: Biocompatibility of furcal perforation repair material technique: Ketac Molar versus ProRoot MTA. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 120, e48–e50 (2006).Google Scholar
  162. 162.
    Van Dijken, J.W.V., Persson, S., Sjöström, S.: Presence of Streptococcus mutans and lactobacilli in saliva and on enamel, glass ionomer cement, and composite resin surfaces. Scand J Dent Res 99, 13–19 (1991).Google Scholar
  163. 163.
    Van Dijken, J.W.V., Sjöström, S.: The effect of glass ionomer cement and composite resin fillings on marginal gingiva. J Clin Periodontol 18, 200–203 (1991).Google Scholar
  164. 164.
    Van Dijken, J.W.: Four-year evaluation of the effect of 10% polyacrylic acid or water rinsing pre-treatment on retention of glass polyalkenoate cement. Eur J Oral Sci 104, 64–66 (1996).Google Scholar
  165. 165.
    Wilson, A.D., Kent, B.E.: A new translucent cement for dentistry. The glass ionomer cement. Br Dent J 132, 133–135 (1972).Google Scholar
  166. 166.
    Xie, D., Chung, I.-D., Wu, W., Mays, J.: Synthesis and evaluation of HEMA-free glass ionomer cements for dental applications. Dent Mater 20, 470–478 (2004).Google Scholar
  167. 167.
    Zmener, O., Dominguez, F.V.: Tissue response to a glass ionomer used as an endodontic cement. A preliminary study in dogs. Oral Surg Oral Med Oral Pathol 56, 198–205 (1983).Google Scholar
  168. 168.
    About, I., Murray, P.E., Franquin, J.C., Remusat, M., Smith, A.J.: Pulpal inflammatory responses following non-carious class V restorations. Oper Dent 26, 336–342 (2001).Google Scholar
  169. 169.
    Anamura, S., Dohi, T., Shirakawa, M., Okamoto, H., Tsujimoto, A.: Effects of phenolic dental medicaments on prostaglandin synthesis by microsomes of bovine tooth pulp and rabbit kidney medulla. Arch Oral Biol 33, 555–560 (1988).Google Scholar
  170. 170.
    Barratt, M.D., Basketter, D.A.: Possible origin of the skin sensitization potential of isoeugenol and related compounds. (I). Preliminary studies of potential reaction mechanisms. Contact Dermatitis 27, 98–104 (1992).Google Scholar
  171. 171.
    Bauer, J.G., Al-Rubayi, A.: Tissue response to direct filling materials. J Prosthet Dent 58, 584–589 (1987).Google Scholar
  172. 172.
    Becker, R.M., Hume, W.R., Wolinksy, L.E.: Release of eugenol from mixtures of ZOE in vitro. J Pedod 8, 71–77 (1983).Google Scholar
  173. 173.
    Berova, N., Stransky, L., Krasteva, M.: Studies on contact dermatitis in stomatological staff. Dermatol Monatsschr 176, 15–18 (1990).Google Scholar
  174. 174.
    Bruze, M., Johansen, J.D., Andersen, K.E., Frosch, P., Goossens, A., Lepoittevin, J.–P., Rastogi, S.C., White, I., Menne, T.: Deodorants: an experimental provocation study with isoeugenol. Contact Dermatitis 52, 260–267 (2005).Google Scholar
  175. 175.
    Buckley, D.A., Basketter, D.A., Smith Pease, C.K., Rycroft, R.J.G., White, I.R., McFadden, J.P.: Simultaneous sensitivity to fragrances. Br J Dermatol 154, 885–888 (2006).Google Scholar
  176. 176.
    Fenaroli, G., Burdock, G.A.: Fenaroli’s Handbook of Flavor Ingredients, vol. 1, 3rd edn. CRC, Cleveland, USA 1994.Google Scholar
  177. 177.
    Goldberg, M., Lasfargues, J.J., Legrand, J.M.: Clinical testing of dental materials: histological considerations. J Dent 22, S25–S28 (1994).Google Scholar
  178. 178.
    Guénette, S.A., Ross, A., Marier, J.-F., Beaudry, F., Vachon, P.: Pharmacokinetics of eugenol and its effects on thermal hypersensitivity in rats. E J Pharmacol 562, 60–67 (2007).Google Scholar
  179. 179.
    Hensten-Pettersen, A., Helgeland, K.: Evaluation of biologic effects of dental materials using four different cell culture techniques. Scand J Dent Res 85, 291–295 (1977).Google Scholar
  180. 180.
    Hensten-Pettersen, A., Jacobsen, N.: Perceived side effects of biomaterials in prosthetic dentistry. J Prosthet Dent 65, 138–144 (1991).Google Scholar
  181. 181.
    Hilton, I., Dearman, R.J., Fielding, I., Basketter, D.A., Kimber, I.: Evaluation of the sensitizing potential of eugenol and isoeugenol in mice and guinea pigs. J Appl Toxicol 16, 459–464 (1996).Google Scholar
  182. 182.
    Hume, W.R.: Influence of dentine on the pulpward release of eugenol or acids from restorative materials. J Oral Rehabil 21, 469–473 (1994).Google Scholar
  183. 183.
    Kallus, T., Hensten-Pettersen, A., Mjör, I.A.: Tissue response to allergenic leachables from dental materials. J Biomed Mater Res 17, 741–755 (1983).Google Scholar
  184. 184.
    Kanerva, L., Estlander, T., Jolanki, R.: Dental nurse’s occupational allergic contact dermatitis from eugenol used as a restorative dental material with polymethylmethacrylate. Contact Dermatitis 38, 339–340 (1998).Google Scholar
  185. 185.
    Kim, H.M., Lee, E.H., Kim, C.Y., Chung, J.G., Kim, S.H., Lim, J.P., Shin, T.Y.: Antianaphylactic properties of eugenol. Pharmacol Res 36, 475–480 (1997).Google Scholar
  186. 186.
    Klötzer, W.T., Langeland, K.: Testing of materials and methods for crown and bridge prosthesis on animals. Schweiz Monatsschr Zahnheilkd 83, 163–244 (1973).Google Scholar
  187. 187.
    Kozam, G.: The effect of eugenol on nerve transmission. Oral Surg Oral Med Oral Pathol 44, 799–805 (1977).Google Scholar
  188. 188.
    Landro, A.D., Valsecchi, R., Marchesi, L.: Allergic reaction with persistent hypopigmentation due to temporary tattooing with henna in a baby. Contact Dermatitis 52, 338–342 (2005).Google Scholar
  189. 189.
    Lindqvist, L., Otteskog, P.: Eugenol: liberation from dental materials and effect on human diploid fibroblast cells. Scand J Dent Res 88, 552–556 (1980).Google Scholar
  190. 190.
    Malten, K.E., van Ketel, W. G., Nater, J. P., Liem, D. H.: Reactions in selected patients to 22 fragrance materials. Contact Dermatitis 11, 1–10 (1984).Google Scholar
  191. 191.
    Murray, P.E., Hafez, A.A., Smith, A.J., Cox, C.F.: Hierarchy of pulp capping and repair activities responsible for dentin bridge formation. Am J Dent 15, 236–243 (2002).Google Scholar
  192. 192.
    Poulsom, R.C.: An anaphylactoid reaction to periodontal surgical dressing: report of case. J Am Dent Assoc 89, 895-896 (1974).Google Scholar
  193. 193.
    Rastogi, S.C., Johansen, J.D., Frosch, P., Menne, T., Bruze, M., Lepoittevin, J.-P., Dreier, B., Andersen, K.E., White, I.R.: Deodorants on the European market: quantitative chemical analysis of 21 fragrances. Contact Dermatitis 38, 29–35 (1998).Google Scholar
  194. 194.
    Rompelberg, C.J., Steenwinkel, M.J., van Asten, J.G., van Delft, J.H., Baan, R.A., Verhagen, H.: Effect of eugenol on the mutagenicity of benzo[a]pyrene and the formation of benzo[a]pyrene-DNA adducts in the lambda-lacZ-transgenic mouse. Mutat Res 369, 87–96 (1996).Google Scholar
  195. 195.
    Rudzki, E.: Occupational dermatitis among health service workers. Derm Beruf Umwelt 27, 112–115 (1979).Google Scholar
  196. 196.
    Rudzki, E., Grzywa, Z.: Dermatitis from propolis. Contact Dermatitis 9, 40–45 (1983).Google Scholar
  197. 197.
    Sarrami, N., Pemperton, M.N., Thornhill, M.H., Theaker, E.D.: Adverse reactions associated with the use of eugenol in dentistry. Br Dent J 193, 257–259 (2002).Google Scholar
  198. 198.
    Schmalz, G.: Die biologische Prüfung von Füllungsmaterialien am Göttinger Miniaturschwein – eine Pilot-Studie. [Biological testing of filling materials using the Göttingen miniature pig] Dtsch Zahnärztl Z 36, 357–360 (1981).Google Scholar
  199. 199.
    Schmalz, G., Rotgans, J.: Een in vitro onderzoek naar de toxciteit van een reuk-en smaakloos zinkoxyde-eugenolcement (iso-protect). [An in vitro study on the toxicity of an odour-free and flavourless zinc oxide and eugenol cement] Ned Tijdschr Tandheelkd 86, 85–88 (1979).Google Scholar
  200. 200.
    Schmalz, G., Hoffmann, M., Weis, K., Schweikl, H.: Influence of albumin and collagen on the cell mortality evoked by zinc oxide-eugenol in vitro. J Endod 26, 284–287 (2000).Google Scholar
  201. 201.
    Schmalz, G., Lamberts-Hepp, U.: Toxizitatsprüfungen von Füllungsmaterialien am Kaninchen.[Toxicity tests of filling materials in the rabbit] Zahnärztl Welt/Reform 92, 46–51 (1983).Google Scholar
  202. 202.
    Schmalz, G., Schmalz, C.: Toxicity tests on dental filling materials. Int Dent J 31, 185–192 (1981).Google Scholar
  203. 203.
    Schmalz, G., Schuster, U., Nützel, K., Schweikl, H.: An in vitro pulp chamber with three-dimensional cell cultures. J Endod, 25, 24–29 (1999).Google Scholar
  204. 204.
    Schnuch, A., Lessmann, H., Geier, J., Frosch, P.J., Uter, W.: Contact allergy to fragrances: frequencies of sensitization from 1996 to 2002. Results of the IVDK. Contact Dermatitis 50, 65–76 (2004).Google Scholar
  205. 205.
    Sela, J., Ulmansky, M.: Reaction of normal and inflamed dental pulp to Calxyl and zinc oxide and eugenol in rats. Oral Surg Oral Med Oral Pathol 30, 425–430 (1970).Google Scholar
  206. 206.
    Trowbridge, H., Edwall, L., Panopoulos, P.: Effect of zinc oxide-eugenol and calcium hydroxide on intradental nerve activity. J Endod 8, 403–406 (1982).Google Scholar
  207. 207.
    Wilson, A.D., Clinton, D.J., Miller, R.P.: Zinc oxide-eugenol cements: IV. Microstructure and hydrolysis. J Dent Res 52, 253–260 (1973).Google Scholar
  208. 208.
    Wöhrl, S., Hemmer, W., Focke, M., Götz, M., Jarisch, R.: The significance of fragrance mix, balsam of Peru, colophony and propolis as screening tools in the detection of fragrance allergy. Br J Dermatol 145, 268–273 (2001).Google Scholar
  209. 209.
    Woolverton, C.J., Fotos, P.G., Mokas, M.J., Mermigas, M.E.: Evaluation of eugenol for mutagenicity by the mouse micronucleus test. J Oral Pathol 15, 450–453 (1986).Google Scholar
  210. 210.
    Akimoto, N., Momoi, Y., Kohno, A., Suzuki, S., Otsuki, M., Cox, C.F.: Biocompatibility of Clearfil Linder Bond 2 and Clearfil AP-X system on nonexposed and exposed primate teeth. Quintessence Int 29, 177–188 (1998). Google Scholar
  211. 211.
    Alliot-Licht, B., Jean, A., Gregoire, M.: Comparative effect of calcium hydroxide and hydroxyapatite on the cellular activity of human pulp fibroblasts in vitro. Arch Oral Biol 39, 481–489 (1994).Google Scholar
  212. 212.
    Andelin, W.E., Shabahang, S., Wright, K., Torabinejad, M.: Identification of hard tissue after experimental pulp capping using dentin sialoprotein (DSP) as a marker. J Endod 29, 646–650 (2003).Google Scholar
  213. 213.
    Baumann, L., Kaufman, J., Saghari, S.: Collagen fillers. Dermatol Ther 19, 134–140 (2006).Google Scholar
  214. 214.
    Berk, H.: The effect of calcium hydroxide-methylcellulose paste on the pulp. J Dent Child 17, 65 (1950).Google Scholar
  215. 215.
    Bègue-Kirn, C., Smith, A.J., Ruch, J.V., Wozney, J.M., Purchio, A., Hartmann, D., Lesot, H.: Effects of dentin proteins, transforming growth factor beta 1 (TGF beta 1) and bone morphogenetic protein 2 (BMP2) on the differentiation of odontoblast in vitro. Int J Dev Biol 36, 491–503 (1992).Google Scholar
  216. 216.
    Bhaskar, S.N., Cutright, D.E., Boyers, R.C., Margetis, P.M.: Pulp capping with isobutyl cyanoacrylate. J Am Dent Assoc 79, 640–644 (1969).Google Scholar
  217. 217.
    Bonnet, C., Charriere, G., Vaquier, J., Bertin, P., Vergne, P., Treves, R.: Bovine collagen induced systemic symptoms: antibody formation against bovine and human collagen. J Rheumatol 23, 545–547 (1996).Google Scholar
  218. 218.
    Bremer, K., Albers, H.K.: Antibakterielle Wirksamkeit von Calciumhydroxid in Abhängigkeit vom Alter des Präparates. [Antibacterial effect of calcium hydroxide depending upon the age og the preparation] Quintessenz 38, 1275–1279 (1987).Google Scholar
  219. 219.
    Briso, A.L.F., Rahal, V., Mestrener, S.R., Junior, E.D.: Biological response of pulps submitted to different capping materials. Braz Oral Res 20, 219–225 (2006).Google Scholar
  220. 220.
    Camilleri, J., Motesin, F.E., Di Silvo, L., Pitt Ford, T.R.: The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. Int Endod J 38, 834–842 (2005).Google Scholar
  221. 221.
    Camilleri, J., Pitt Ford, T.R.: Mineral trioxide aggregate: a review of the constituents and biological properties of the material. Int Endod J 39, 747–754 (2006).Google Scholar
  222. 222.
    Carmichael, D.J., Dick, H.M., Dodd, C.M.: Histologic effects of antigenically altered collagen as a heterograft for mammalian pulp exposures. Arch Oral Biol 19, 1121–1126 (1974).Google Scholar
  223. 223.
    Cavalcanti, B.N., Rode, S.M., Marques, M.M.: Cytotoxicity of substances leached or dissolved from pulp capping materials. Int Endod J 38, 505–509 (2005).Google Scholar
  224. 224.
    Chan, C.C., Cheong, T.H., Lee, H.S., Wang, Y.T., Poh, S.C.: Case of occupational asthma due to glue containing cyanoacrylate. Ann Acad Med Singapore 23, 731–733 (1994).Google Scholar
  225. 225.
    Conde-Salazar S.L., Rojo, S., Guimaraens, D.: Occupational allergic contact dermatitis from cyanoacrylate. Am J Contact Dermat 9, 188–189 (1998).Google Scholar
  226. 226.
    Cox, C.F., Hafez, A.A., Akimoto, N., Otsuki, M., Suzuki, S., Tarim, B.: Biocompatibility of primer, adhesive and resin composite systems on non-exposed pulps of non-human primate teeth. Am J Dent 11, S55–S63 (1998).Google Scholar
  227. 227.
    Cox C.F., Subay R.K., Ostro E., Suzuki S., Suzuki S.H.: Tunnel defects in dentin bridges: their formation following direct pulp capping. Oper Dent 21, 4–11 (1996).Google Scholar
  228. 228.
    Duque, C., Hebling, J., Smith, A.J., Giro, E.M.A., Oliveira, M.F., De Souza Costa, C. A.: Reactionary dentinogenesis after applying restorative materials and bioactive dentin matrix molecules as liners in deep cavities prepared in nonhuman primate teeth. J Oral Rehabil 33, 452–461 (2006).Google Scholar
  229. 229.
    DeFreitas, J.F.: Characterization and aqueous extraction of calcium hydroxide materials. Aust Dent J 27, 352–356 (1982).Google Scholar
  230. 230.
    Faraco Junior I.M., Holland, R.: Histomorphological response of dogs’ dental pulp capped with white mineral trioxide aggregate. Braz Dent J 15, 104–108 (2004).Google Scholar
  231. 231.
    Feldman, D.S., Sierra, D.S.: Tissue adhesive in wound healing. Encyclopedic Handbook of Biomaterials and Bioengineering. D.L. Wise, D.J. Trantolo, D.E. Altobelli, M.J. Yaszemski, J.D. Gresser, E.R. Schwartz (eds). Marcel Dekker, New York (1995), pp 1347–1378.Google Scholar
  232. 232.
    Fiore-Donno, G., Baume, L.J.: Effects of pulp capping compounds containing corticosteroids on the human dental pulp. Acta Helv Odont 6, 23–28 (1962).Google Scholar
  233. 233.
    Ford, T.R., Torabinejad, M., Abedi, H.R., Bakland, L.K., Kariyawasam, S.P.: Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc 127, 1491–1494 (1996).Google Scholar
  234. 234.
    Fritsch, P.: Dermatologie und Venereologie: Lehrbuch und Atlas. [Dermatology and Venerology: textbook and atlas] Springer Verlag, Berlin (1998).Google Scholar
  235. 235.
    Fujisawa, S., Atsumi, T., Satoh, K., Sakagami, H.: Interaction between 2-ethoxybenzoic acid (EBA) and eugenol, and related changes in cytotoxicity. J Dent Res 82, 43–47 (2003). Google Scholar
  236. 236.
    Gängler, P.: Vergleichende vitalmikroskopische und histologische Untersuchungen zum Wirkungsmechanismus der Pulpaüberkappungsmittel Kalziumhydroxid und Zinkoxid-Eugenol. [Comparative vital microscopy and histological study on the mechanism of action of the pulp capping materials calcium hydroxide and zinc oxide and eugenol] Zahn Mund Kieferheilk 65, 376–381 (1977).Google Scholar
  237. 237.
    Geurtsen, W., Leinenbach, F., Krage, T., Leyhausen, G.: Cytotoxicity of four root canal sealers in permanent 3T3 cells and primary human periodontal ligament fibroblast cultures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85, 592–597 (1998). Google Scholar
  238. 238.
    Glass, R.L., Zander, H.A.: Pulp healing. J Dent Res 28, 97–107 (1949).Google Scholar
  239. 239.
    Goldberg, M., Smith, A.J.: Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15, 13–27 (2004).Google Scholar
  240. 240.
    Grajower, R., Bielak, S., Eidelman, E.: Observations on a calcium hydroxide lining in retrieved deciduous teeth, with proximal amalgam fillings. J Oral Rehabil 11, 561–569 (1984).Google Scholar
  241. 241.
    Guin, J.D., Baas, K., Nelson, A.P.: Contact sensitization to cyanoacrylate adhesive as a cause of severe onychodystrophy. Int J Dermatol 37, 31–36 (1998).Google Scholar
  242. 242.
    Herod, E.L.: Cyanoacrylates in dentistry: a review of the literature. J Can Dent Assoc 56, 331–334 (1990).Google Scholar
  243. 243.
    Holland, R., de Souza, V., Nery, M.J., Otoboni Filho, J.A., Bernabe, P.F., Dezan, E. Jr.: Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J Endod 25, 161–166 (1999).Google Scholar
  244. 244.
    Holland, R., de Souza, V., Nery, M.J., Faraco Junior I.M., Bernabe, P.F., Otoboni Filho, J.A., Dezan Junior, E.: Reaction of rat connective tissue to implanted dentin tube filled with mineral trioxide aggregate, Portland cement or calcium hydroxide. Braz Dent J 12, 3–8 (2001).Google Scholar
  245. 245.
    Huang, F.M., Tai, K.W., Chou, M.Y., Chang, Y.C.: Cytotoxicity of resin-, zinc oxide-eugenol-, and calcium hydroxide-based root canal sealers on human periodontal ligament cells and permanent V79 cells. Int Endod J 35, 153–158 (2002).Google Scholar
  246. 246.
    Hwas, M., Sandrik, J.L.: Acid and water solubility and strength of calcium hydroxide bases. J Am Dent Assoc 108, 46–48 (1984).Google Scholar
  247. 247.
    Jacobs, M.C., Rycroft, R.J.: Allergic contact dermatitis from cyanoacrylate? Contact Dermatitis 33, 71 (1995).Google Scholar
  248. 248.
    Jaunberzins, A., Gutmann, J.L., Witherspoon, D.E., Harper, R.P.: Effects of calcium hydroxide and transforming [correction of tumor] growth factor-beta on collagen synthesis in subcultures I and V of osteoblasts. J Endod 26, 494–499 (2000).Google Scholar
  249. 249.
    Jean, A., Kerebel, B., Kerebel, L.M., Legeros, R.Z., Hamel, H.: Effects of various calcium phosphate biomaterials on reparative dentin bridge formation. J Endod 14, 83–87 (1988).Google Scholar
  250. 250.
    Klaiber, B., Mittermayer, C.: Capping materials in the cell culture test. Dtsch Zahnärztl Z 36, 148–155 (1981).Google Scholar
  251. 251.
    Klein A.W.: Collagen substances. Facial Plast Surg Clin North Am 9, 205–218 (2001).Google Scholar
  252. 252.
    Koh, E.T., Torabinejad, M., Pitt, F.T., Brady, K., McDonald, F.: Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res 37, 432–439 (1997).Google Scholar
  253. 253.
    Lado, E.A., Pappas, J., Tyler, K., Stanley, H.R., Walker, C.: In vitro antimicrobial activity of six pulp-capping agents. Oral Surg Oral Med Oral Pathol 61, 197–200 (1986).Google Scholar
  254. 254.
    Lehner, T., Lyne, C.: Adrenal function during topical oral treatment with triamcinolone acetonide. Br Dent J 129, 164–167 (1970).Google Scholar
  255. 255.
    Lesot, H., Bègue-Kirn, C., Kubler, M.D., Meyer, J.M., Smith, A.J., Cassidy, N., Ruch, J.V.: Experimental induction of odontoblast differentiation and stimulation during reparative processes. Cell Mater 3, 201–217 (1993).Google Scholar
  256. 256.
    Lowe, N.J., Maxwell, C.A., Patnaik, R.: Adverse reactions to dermal fillers: review. Dermatol Surg 31, 1616–1625 (2005).Google Scholar
  257. 257.
    Menezes, R., Bramante, C.M., Letra, A., Carvalho, V.G., Garcia, R.B.: Histologic evaluation of pulpotomies in dog using two types of mineral trioxide aggregate and regular and white Portland cements as wound dressing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98, 376–379 (2004).Google Scholar
  258. 258.
    Mullins, R.J., Richards, C., Walker, T.: Allergic reactions to oral, surgical and topical bovine collagen. Anaphylactic risk for surgeons. Austr NZ J Ophthalmol 24, 257–260 (1996).Google Scholar
  259. 259.
    Murray P.E., Winsor L.J., Smyth T.W., Hafez A.A., Cox C.F.: Analysis of pulpal reactions to restorative procedures, materials, pulp capping, and future therapies. Crit Rev Oral Biol Med 13, 509–520 (2002).Google Scholar
  260. 260.
    Min, K.-S., Kim, H.-I., Park, H.-J., Pi, S.-H., Hong, C.-U., Kim, E.-C.: Human pulp cells response to Portland cement in vitro. J Endod 33, 163–166 (2007).Google Scholar
  261. 261.
    Nakashima, M.: Dentin induction by implants of autolyzed antigen-extracted allogeneic dentin on amputated pulps of dogs. Endod Dent Traumatol 5, 279–286 (1989).Google Scholar
  262. 262.
    Nakashima, M., Nagasawa, H., Yamada, Y., Reddi, A.H.: Regulatory role of transforming growth factor-beta, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev Biol 162, 18–28 (1994).Google Scholar
  263. 263.
    Pitt Ford, T.R. Torabinejad, M., Abedi, H.R., Bakland L.K., Kariyawasam, S.P.: Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc 127, 1491–1494 (1996).Google Scholar
  264. 264.
    Piva, E., Tarquinio, S.B.C., Demarco, F.F., Silva, A.F., de Araújo, V.C.: Immunohistochemical expression of fibronectin and tenascin after direct pulp capping with calcium hydroxide. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102, e66–e71 (2006).Google Scholar
  265. 265.
    Pollack, S.: Some new injectable dermal filler materials: Hylaform, Restylane, and Artecoll. J Cutan Med Surg 3 (suppl 4), 27–35 (1999).Google Scholar
  266. 266.
    Reeves, R., Stanley, H.R.: The relationship of bacterial penetration and pulpal pathosis in carious teeth. Oral Surg Oral Med Oral Pathol 22, 59–65 (1966).Google Scholar
  267. 267.
    Rehfeld, R.L., Mazer, R.B., Leinfelder, K.F., Russell, C.M.: Evaluation of various forms of calcium hydroxide in the monitoring of microleakage. Dent Mater 7, 202–205 (1991).Google Scholar
  268. 268.
    Ribeiro, D.A., Marques, M.E., Salvadori, D.M.: Antimicrobial endodontic compounds do not modulate alkylation-induced genotoxicity and oxidative stress in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102, e32–e36 (2006).Google Scholar
  269. 269.
    Rutherford, R.B., Gu, K.: Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic protein-7. Eur J Oral Sci 108, 202–206 (2000).Google Scholar
  270. 270.
    Santos, A.D., Moraes, J.C., Araujo, E.B., Yukimitu, K., Valerio Filho W.V.: Physico-chemical properties of MTA and a novel experimental cement. Int Endod J 38, 443–447 (2005).Google Scholar
  271. 271.
    Schroeder, U., Granath, L.E.: Early reaction of intact human teeth to calcium hydroxide following experimental pulpotomy and its significance to the development of hard tissue barrier. Odontol Rev 22, 379–395 (1971).Google Scholar
  272. 272.
    Six, N., Decup, F., Lasfargues, J.–J., Salih, E., Goldberg, M.: Osteogenic proteins (bone sialoprotein and bone morphogenic protein-7) and dental pulp mineralization. J Mater Sci 13, 225–232 (2002).Google Scholar
  273. 273.
    Sluka, H., Lehmann, R., Flores-de Jacoby, L.: Verwendung von organischer Knochenmatrix als Material für die direkte Überkappung der Pulpa. [The use of organic bone matrix for direct pulp capping] Dtsch Zahnärztl Z 34, 467–469 (1979).Google Scholar
  274. 274.
    Smith, A.J., Tobias, R.S., Cassidy, N., Plant, C.G., Brown, M., Beque-Kirn, C., Ruch, J.V., Lesot, H.: Odontoblast stimulation in ferrets by dentin matrix components. Arch Oral Biol 39, 13–22 (1994).Google Scholar
  275. 275.
    Staehle, H.J.: Experimentelle Untersuchungen über das Löslichkeitsverhalten verschiedener Unterfüllungsmaterialien. [Experimental studies on the solubility of different base materials] Dtsch Zahnärztl Z 42, 633–638 (1987).Google Scholar
  276. 276.
    Staehle, H.J., Pioch, T., Hoppe, W.: The alkalizing properties of calcium hydroxide compounds. Endod Dent Traumatol 5, 147–152 (1989).Google Scholar
  277. 277.
    Stanley, H.R.: Diseases of dental pulp. In: Tiecke, R.W. (ed): Oral Pathology. McGraw-Hill, New York 1965, pp 95–103.Google Scholar
  278. 278.
    Stanley, H.R.: Biologic responses of dentin & pulp to dental restorative procedures: scientific background and therapeutic recommendations. In: Hardin, J.F. (ed): Clark’s Clinical Dentistry. Lippincott, Philadelphia 1990, p 27.Google Scholar
  279. 279.
    Stanley, H.R., Broom, C.A., Spiegel, E.H., Schultz, M.S.: Detecting dentinal sclerosis in decalcified sections with the Pollak trichrome connective tissue stain. J Oral Pathol 9, 359–371 (1980).Google Scholar
  280. 280.
    Stanley, H.R., Lundy, T.: Dycal therapy for pulp exposures. Oral Surg Oral Med Oral Pathol 34, 818–827 (1972).Google Scholar
  281. 281.
    Stanley, H.R., Pameijer, C.H.: Pulp capping with a new visible-light-curing calcium hydroxide composition (Prisma VLC Dycal). Oper Dent 10, 156–163 (1985).Google Scholar
  282. 282.
    Stanley, H.R., Pereira, J.C., Spiegel, E., Broom, C., Schultz, M.: The detection and prevalence of reactive and physiologic sclerotic dentin, reparative dentin and dead tracts beneath various types of dental lesions according to tooth surface and age. J Oral Pathol 12, 257–289 (1983).Google Scholar
  283. 283.
    Stolman, L.P.: Human collagen reactions. Dermatol Surg 31, 1634 (2005).Google Scholar
  284. 284.
    Stuart, W., Crowley, L.V., Turner, D.W., Pelleu, G.B., Jr., Osetek, E.: Humoral response to endodontic cements. J Endod 5, 214–219 (1979).Google Scholar
  285. 285.
    Thomsen, G. F.: Arbejdsbetinget astma udlost af cyanoakrylatlim. [Occupational asthma induced by cyanoacrylete glue] Ugeskr Laeger 156, 5131–5132 (1994).Google Scholar
  286. 286.
    Tomb, R.R., Lepoittevin, J.P., Durepaire, F., Grosshans, E.: Ectopic contact dermatitis from ethyl cyanoacrylate instant adhesives. Contact Dermatitis 28, 206–208 (1993).Google Scholar
  287. 287.
    Torabinejad, M., Ford, T.R., Abedi, H.R., Kariyawasam, S.P., Tang, H.M.: Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. J Endod 24, 468–471 (1998).Google Scholar
  288. 288.
    Torabinejad, M., Hong, C.U., McDonald, F., Pitt, F.T.: Physical and chemical properties of a new root-end filling material. J Endod 21, 349–353 (1995).Google Scholar
  289. 289.
    Torabinejad, M., Hong, C.U., Pitt, F.T., Kettering, J.D.: Cytotoxicity of four root end filling materials. J Endod 21, 489–492 (1995).Google Scholar
  290. 290.
    Turner, C., Courts, F.J., Stanley, H.R.: A histological comparison of direct pulp capping agents in primary canines. J Dent Child 54, 423–428 (1987).Google Scholar
  291. 291.
    Tziafas, D., Smith, A.J., Lesot, H.: Designing new treatment strategies in vital pulp therapy. J Dent 28, 77–92 (2000).Google Scholar
  292. 292.
    Tziafas, D., Pantelidou, O., Alvanou, A., Belobasakis, G., Papadimitriou, S.: The dentinogenic effect of mineral trioxide aggregate (MTA) in short term capping experiments. Int Endod J 35 (3), 245–254 (2002).Google Scholar
  293. 293.
    Uitto, V.J., Antila, R., Ranta, R.: Effects of topical glucocorticoid medication on collagen biosynthesis in the dental pulp. Acta Odontol Scand 33, 287–298 (1975).Google Scholar
  294. 294.
    Wilkinson, S.M.: Hypersensitivity to topical corticosteroids. Clin Exp Dermatol 19, 1–11 (1994).Google Scholar
  295. 295.
    Aldini, N.N., Fini, M., Giavaresi, G., Torricelli, P., Martini, L., Giardino, R., Ravagliolo, A., Krajewski, A.M., Mazzocchi, M., Dubini, B., Ponzi-Bossi, M.G., Rustichelli, F., Stanic, V.: Improvement in zirconia osseointegration by means of a biological glass coating: an in vitro and in vivo investigation. J Biomed Mater Res 61, 282–289 (2002).Google Scholar
  296. 296.
    Anneroth, G., Ericsson, A.R., Zetterqvist, L.: Tissue integration of Al2O3-ceramic dental implants (Frialit) – a case report. Swed Dent J 14, 63–70 (1990).Google Scholar
  297. 297.
    Anusavice, K.J.: Degradability of dental ceramics. Adv Dent Res 6, 82–89 (1992).Google Scholar
  298. 298.
    Anusavice, K.J., Zhang, N.Z.: Chemical durability of Dicor and lithia-based glass-ceramics. Dent Mater 13, 13–19 (1997).Google Scholar
  299. 299.
    Ardlin, B.I.: Transformation-toughened zirconia for dental inlays, crowns and bridges: chemical stability and effect of low-temperature aging on flexural strength and surface structure. Dent Mater 18, 590–595 (2002).Google Scholar
  300. 300.
    Bagambisa, F.B., Kappert, H.F., Schilli, W.: Cellular and molecular biological events at the implant interface. J Craniomaxillofac Surg 22, 12–17 (1994).Google Scholar
  301. 301.
    Bagambisa, F.B., Kappert, H.F., Schilli, W.: Interfacial reactions of osteoblasts to dental and implant materials. J Oral Maxillofac Surg 51, 52–56 (1994).Google Scholar
  302. 302.
    Bagchi, N.: What makes silica toxic? Br J Industr Med 49, 163–166 (1992).Google Scholar
  303. 303.
    Beck-Coon, R.J., Newton, C.W., Kafrawy, A.H.: An in vivo study of the use of a nonresorbable ceramic hydroxyapatite as an alloplastic graft material in periapical surgery. Oral Surg Oral Med Oral Pathol 71, 483–488 (1991).Google Scholar
  304. 304.
    Beiran, I., Miller, B., Bentur, Y.: The efficacy of calcium gluconate in ocular hydrofluoric acid burns. Hum Exp Toxicol 16, 223–228 (1997).Google Scholar
  305. 305.
    a. Brackett M.G., Lockwood P.E., Messer R.L., Lewis J.B., Bouillaguet S., Wataha J.C.: In vitro cytotoxic response to lithium disilicate dental ceramics. Dent Mater 24, 450–456 (2008).Google Scholar
  306. 306.
    Butler, C. J., Masri, R., Driscoll, C. F., Thompson, G. A., Runyan, D. A., Anthony von Fraunhofer, J.: Effect of fluoride and 10% carbamide peroxide on the surface roughness of low-fusing and ultra low-fusing porcelain. J Prosthet Dent 92, 179–183 (2004).Google Scholar
  307. 307.
    Canay, S., Hersek, N., Ertan, A.: Effect of different acid treatments on a porcelain surface. J Oral Rehabil 28, 95–101 (2001).Google Scholar
  308. 308.
    Chan, C., Thompson, I., Robinson, P., Wilson, J., Hench, L.: Evaluation of Bioglass/dextran composite as a bone graft substitute. Int J Oral Maxillofac Surg 31, 73–77 (2002).Google Scholar
  309. 309.
    Claus, H.: Werkstoffkundliche Grundlagen der Dentalkeramik. [Fundamentals on dental ceramics] Dent Lab 28, 1743–1750 (1980).Google Scholar
  310. 310.
    Council of Dental Materials, Instruments, and Equipment, Council on Dental Therapeutics. Status report: effect of acidulated phosphate fluoride on porcelain and composite restorations. J Am Dent Assoc 116, 115 (1988)Google Scholar
  311. 311.
    Demirel, F., Yüksel, G., Muhtarogullari, M., Cekiç, C.: Effect of topical fluorides and citric acid on heat-pressed all-ceramic material. Int J Periodontics Restorative Dent 25, 277–281 (2005).Google Scholar
  312. 312.
    Domingo, J.L., Gomez, M., Bosque, M.A., Corbella, J.: Lack of teratogenicity of aluminium hydroxide in mice. Life Sci 45, 243–247 (1989).Google Scholar
  313. 313.
    Fischer-Brandies, E., Pratzel, H., Wendt, T.: Zur radioaktiven Belastung durch Implantate aus Zirkonoxid. [Radioactive burden resulting from zirconia implants] Dtsch Zahnärztl Z 46, 688–690 (1991).Google Scholar
  314. 314.
    Gelenberg, A.J., Kane, J.M., Keller, M.B. et al.: Comparison of standard and low serum levels of lithium for maintenance treatment of bipolar disorder. N Eng J Med 321, 1489–1493 (1989).Google Scholar
  315. 315.
    Gonzales, E., Naleway, C. A., Fan, P. L., Jaseiskis, T.: Decrease in reflectance of porcelains treated with APF gels. Dent Mater 4, 289–295 (1988).Google Scholar
  316. 316.
    Goyer, R.A.: Toxic effects of metals: Lithium. In: Toxicology. The Basic Science of Poisons. Amdur, M.O., Doull, J., Klaassen, C. D. (eds). Pergamon Press, Elmsford, New York (1984), pp 665–666. Google Scholar
  317. 317.
    Griggs, J.A., Wataha, J.C., Kishen, A.: Effect of hydrolyzed surface layer on the cytotoxicity and chemical resistance of low fusing porcelains. Dent Mater 19, 353–358 (2003).Google Scholar
  318. 318.
    Haas, R., Baron, M., Donath, K., Zechner, W., Watzek, G.: Porous hydroxyapatite for grafting the maxillary sinus: a comparative histomorphometric study in sheep. Int J Oral Maxillofac Implants 17, 337–346 (2002).Google Scholar
  319. 319.
    Council of the European Communities: Council Directive 96/29/EURATOM of 13 May 1996, http://ec.europa.eu/energy/nuclear/radioprotection/doc/legislation/9629_en.pdf. Cited May 2008.Google Scholar
  320. 320.
    International Organization for Standardization: ISO FDIS 6872: Dental ceramic. Geneva 2007.Google Scholar
  321. 321.
    International Organization for Standardization: ISO 4824: Dentistry – ceramic denture teeth. Geneva, 2000Google Scholar
  322. 322.
    Kappert, H.F., Krah, M.: Keramiken – eine Übersicht. [Ceramics – an overview] Quintessenz Zahntech 27, 668–704 (2001).Google Scholar
  323. 323.
    Kawahara, H.: Cellular responses to implant materials: biological, physical and chemical factors. Int Dent J 33, 350–375 (1983).Google Scholar
  324. 324.
    Köster, K., Karbe, E., Kramer A., Heide, H., König, R.: Experimenteller Knochenersatz durch resorbierbare Calcium-Phosphat-Keramik. [Experimental bone replacements by resorbable calcium phosphate ceramic] Langenbecks Arch Chir 341, 77–86 (1976).Google Scholar
  325. 325.
    Küpper, H., Bieniek, K.W.: Hi-Ceram und Parodont: eine klinische Studie. [Hi-Ceram and the periodontium. A clinical study] Dtsch Zahnärztl Z 44, 795–797 (1989).Google Scholar
  326. 326.
    Kula, K., Kula, T. J.: The effect of topical APF foam and other fluorides on veneer porcelain surfaces. Pediatr Dent 17, 356–361 (1995).Google Scholar
  327. 327.
    Lacefield, W.R.: Materials characteristics of uncoated/ceramic-coated implant materials. Adv Dent Res 13, 21–26 (1999).Google Scholar
  328. 328.
    Lang, H., Kruppenbacher, J.P., Mertens, Th.: Toxizität von Hydroxylapathitkeramiken auf menschliche und tierische Osteoblasten. [Toxicity of hydroxyapatite ceramics on human and animal osteoblasts] Dtsch Zahnärztl Z 44, 135–137 (1989).Google Scholar
  329. 329.
    Lawton, D.M., Lamaletie, M.D.J., Gardner, D.L.: Biocompatibility of hydroxyapatite ceramic: response of chondrocytes in a test system using low temperature scanning electron microscopy. J Dent 17, 21–27 (1989).Google Scholar
  330. 330.
    Letic-Gavrilovic, A., Scandurra, R., Abe, K.: Genetic potential of interfacial guided osteogenesis in implant devices. Dent Mater J 19, 99–132 (2000).Google Scholar
  331. 331.
    Limberger, F., Lenz, E.: Biologische Prüfung der In-Ceram-Keramik im Vergleich mit Kobaltbasis-Legierungen und den Metallen Titan, Tantal und Niob im Tierexperiment. [Biological tests on In-Ceram ceramics compared with cobalt alloys and the metals titanium, tantal, and niobium in animal experimentation] Dtsch Stomatol 41, 407–410 (1991).Google Scholar
  332. 332.
    Mackert, J.R.: Side-effects of dental ceramics. Adv Dent Res 6, 90–93 (1992).Google Scholar
  333. 333.
    Messer, R.L.W., Lockwood, P.E., Wataha, J.C., Lewis, J.B., Norris, S., Bouillaguet, S.: In vitro cytotoxicity of traditional versus contemporary dental ceramics. J Prosthet Dent 90, 452–458 (2003).Google Scholar
  334. 334.
    Moore, J.E., MacCulloch, W.T.: The inclusion of radioactive compounds in dental porcelains. Br Dent J 136, 101–106 (1974).Google Scholar
  335. 335.
    Nally, J.N., Meyer, J.M., Niederer, J.: Uranium content of special dental porcelains and β (beta) activity. Helv Odont Acta 13, 32–35 (1969).Google Scholar
  336. 336.
    Nery, E.B., LeGeros, R.Z., Lynch, K.L., Lee, K.: Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/ßTCP in periodontal osseous defects. J Periodontol 63, 729–735 (1992).Google Scholar
  337. 337.
    Nishiyama, M., Takamisawa, M., Ohashi, M.: A study of dental porcelain solubility – dissolving of component elements and resultant surface roughness and abrasion. J Nihon Univ Sch Dent 25, 262–276 (1983).Google Scholar
  338. 338.
    Noel, L., Leblanc, J.-C., Guérin, T.: Determination of several elements in duplicate meals from catering establishments using closed vessel microwave digestion with inductively coupled plasma mass spectrometry detection: estimation of daily dietary intake. Food Addit Contam 20, 44–56 (2003).Google Scholar
  339. 339.
    O’Riordan, M.C., Hunt, G.J.: Radioactive fluorescers in dental porcelains. (British) National Radiological Protection Board (1974).Google Scholar
  340. 340.
    Ozaki, T.: An experimental study on the biological safety of calcium phosphate glass ceramic. Nippon Seikeigeka Gakkai 64, 1215–1225 (1990).Google Scholar
  341. 341.
    Pallesen, U., van Dijken, J.W.V.: An 8-year evaluation of sintered ceramic and glass ceramic inlays processed by the Cerec CAD/CAM system. Eur J Oral Sci 108, 239–246 (2000).Google Scholar
  342. 342.
    Peplinski, D.R., Wozniak, W.T., Moser, J.B.: Spectral studies of new luminophors for dental porcelain. J Dent Res 59, 1501–1506 (1980).Google Scholar
  343. 343.
    Piatelli, A., Podda, G., Scarano, A.: Histological evaluation of bone reactions to aluminium oxide dental implants in man: a case report. Biomaterials 17, 711–714 (1996).Google Scholar
  344. 344.
    Piconi, C., Macauro, G.: Zirconia as a ceramic biomaterial. Biomaterials 20, 1–25 (1999).Google Scholar
  345. 345.
    Pilliar, R.M., Deporter, D.A., Watson, P.A., Pharoah, M., Chipman, M., Valiquette, N., Carter, S., DeGroot, K.: The effect of partial coating with hydroxyapatite on bone remodeling in relation to porous-coated titanium-alloy dental implants in the dog. J Dent Res 70, 1338–1345 (1991).Google Scholar
  346. 346.
    Porstendörfer, J., Reineking, A., Willert H.-G.: Radiation risk estimation based on activity measurements of zirconium oxide implants. J Biomed Mater Res 32, 663–667 (1996). Google Scholar
  347. 347.
    Risito, C., Lüthy, H., Löffel, O., Schärer, P.: Chemische Löslichkeit und Festigkeit von niedrigschmelzenden Dentalporzellanen. [Chemical solubility and strength of low fusing dental ceramics] Schweiz Monatsschr Zahnmed 105, 611–616 (1995).Google Scholar
  348. 348.
    Roulet, J.F., Janda, R.: Future ceramic systems. Oper Dent 26, 211–228 (2001).Google Scholar
  349. 349.
    Ruano, R., Jäger, R.G., Jäger, M.M.M.: Effect of a ceramic and a nonceramic hydroxyapatite on cell growth and procollagen synthesis of cultured human gingival fibroblasts. J Periodontol 71, 540–545 (2000).Google Scholar
  350. 350.
    Rueger, J.M., Linhart, W., Sommerfeldt, D.: Biologische Reaktionen auf Calciumphosphatkeramik-Implantationen. [Biological reactions after the implantation of calcium phosphate ceramics] Orthopäde 27, 89–95 (1998).Google Scholar
  351. 351.
    Schäfer, R., Kappert, H.F.: Die chemische Löslichkeit von Dentalkeramiken. [The chemical solubility of dental ceramics] Dtsch Zahnärztl Z 48, 625–628 (1993).Google Scholar
  352. 352.
    Scher, E.L., Day, R.B., Speight, P.M.: New bone formation after a sinus lift procedure using demineralized freeze-dried bone and tricalcium phosphate. Implant Dent 8, 49–53 (1999).Google Scholar
  353. 353.
    Schmalz, G., Schmalz, C.: Toxicity tests on dental filling materials. Int Dent J 31, 185–192 (1981). Google Scholar
  354. 354.
    Schwickerath, H.: Dauerfestigkeit von Keramik. [Fatigue resistance of ceramics] Dtsch Zahnärztl Z 41, 264–266 (1986).Google Scholar
  355. 355.
    Sjögren, G., Sletten, G., Dahl, J.E.: Cytotoxicity of dental alloys, metals, and ceramics assessed by Millipore filter, agar overlay, and MTT tests. J Prosthet Dent 84, 229–236 (2000).Google Scholar
  356. 356.
    Steflik, D.E., Corpe, R.S., Young, T.R., Buttle, K.: In vivo evaluation of the biocompatibility of implanted biomaterials: morphology of the implant-tissue interactions. Implant Dent 7, 338–350 (1998).Google Scholar
  357. 357.
    Strub, J.R., Gaberthüel, T.W.: Trikalziumphosphat und dessen biologisch abbaubare Keramik in der parodontalen Knochenchirurgie. Eine Literaturübersicht. [Tricalcium phosphate and its biologically degradable ceramic in periodontal bone surgery. A literature review] Schweiz Monatsschr Zahnheilk 88, 798–803 (1978).Google Scholar
  358. 358.
    Studer, S., Lehner, C., Brodbeck, U., Schärer, P.: Short-term results of IPS-Empress inlays and onlays. J Prosthod 5, 277–287 (1996).Google Scholar
  359. 359.
    Tadic, D., Epple, M.: A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25, 987–994 (2004).Google Scholar
  360. 360.
    Tateishi, T., Yunoki, H.: Research and development of alumina and zirconia artificial hip joint. Clin Mat 12, 219–225 (1993).Google Scholar
  361. 361.
    Uo, M., Sjögren, G., Sundh, A., Watari, F., Bergman, M., Lerner, U.: Cytotoxicity and bonding property of dental ceramics. Dent Mater 19, 487–492 (2003).Google Scholar
  362. 362.
    Van Dijken, J.W.V., Höglund-Aberg, C., Olofsson, A.-L.: Fired ceramic inlays: a 6-year follow up. J Dent 26, 219–225 (1998).Google Scholar
  363. 363.
    a Veronese, I., Guzzi, G., Giussani, A., Cantone, M.C., Ripamonti, D.: Determination of dose rates from natural radionuclides in dental materials. J Environ Radioact 91, 15–26 (2006).Google Scholar
  364. 364.
    Wang, M. L., Tuli, R., Manner, P. A., Sharkey, P. F., Hall, D. J., Tuan, R. S.: Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles. J Orthop Res 21, 697–707 (2003).Google Scholar
  365. 365.
    Wataha, J.C.: Materials for endosseous dental implants. J Oral Rehabil 23, 79–90 (1996).Google Scholar
  366. 366.
    Yamamoto, A., Honma, R., Sumita, M., Hanawa, T.: Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res 68A, 244–256 (2004).Google Scholar
  367. 367.
    Zelic, O., Dimitrijevic, B., Vasilijevska, M., Dujic, A., Lekic, P.C.: A dental implant: aluminium trioxide exhibited no effect on mouse reproductive and mutanogenic potential. J Clin Periodontol 25, 892–896 (1998).Google Scholar
  368. 368.
    Zetterqvist, L., Anneroth, G., Nordenram, A.: Tissue integration of Al2O3-ceramic implants: an experimental study in monkeys. Int J Oral Maxillofac Impl 6, 285–293 (1991).Google Scholar
  369. 369.
    Zetterqvist, L., Anneroth, G., Nordenram, A., Wroblewski, R.: X-ray microanalytical and morphological observations of the interface region between ceramic implant and bone. Clin Oral Impl Res 6, 104–113 (1995).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gottfried Schmalz
    • 1
  • H. Stanley
    • 2
  • Birger Thonemann
    • 1
    • 3
  1. 1.Department of Operative Dentistry and PeriodontologyUniversity of RegensburgRegensburgGermany
  2. 2.College of DentistryUniversity of FloridaGainesvilleUSA
  3. 3.DüsseldorfGermany

Personalised recommendations