Merging First-Order Knowledge Using Dilation Operators

  • Nikos Gorogiannis
  • Anthony Hunter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4932)


The area of knowledge merging is concerned with merging conflicting information while preserving as much as possible. Most proposals in the literature work with knowledge bases expressed in propositional logic. We propose a new framework for merging knowledge bases expressed in (subsets of) first-order logic. Dilation operators (a concept originally introduced by Bloch and Lang) are employed and developed, and by combining them with the concept of comparison orderings we obtain a framework that is driven by model-based intuitions but that can be implemented in a syntax-based manner. We demonstrate specific dilation operators and comparison orderings for use in applications. We also show how postulates from the literature on knowledge merging translate into our framework and provide the conditions that dilation operators and comparison orderings must satisfy in order for the respective merging operators to satisfy the new postulates.


Knowledge Base Propositional Logic Belief Revision Integrity Constraint Dilation Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baral, C., Kraus, S., Minker, J.: Combining multiple knowledge bases. IEEE Transactions on Knowledge and Data Engineering 3(2), 208–220 (1991)CrossRefGoogle Scholar
  2. 2.
    Revesz, P.Z.: On the semantics of arbitration. Journal of Algebra and Computation 7(2), 133–160 (1997)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). IEEE Transactions on Knowledge and Data Engineering 10(1), 76–90 (1998)CrossRefGoogle Scholar
  4. 4.
    Lin, J., Mendelzon, A.O.: Merging databases under constraints. International Journal of Cooperative Information Systems 7(1), 55–76 (1998)CrossRefGoogle Scholar
  5. 5.
    Everaere, P., Konieczny, S., Marquis, P.: Quota and Gmin merging operators. In: IJCAI 2005. Nineteenth International Joint Conference on Artificial Intelligence, pp. 424–429 (2005)Google Scholar
  6. 6.
    Konieczny, S., Pérez, R.P.: On the logic of merging. In: KR 1998. Sixth International Conference on Principles of Knowledge Representation and Reasoning, pp. 488–498 (1998)Google Scholar
  7. 7.
    Konieczny, S., Pérez, R.P.: Merging with integrity constraints. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 233–244. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Konieczny, S., Pérez, R.P.: Merging Information Under Constraints: A Logical Framework. Journal of Logic and Computation 12(5), 773–808 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelligence 157(1–2), 49–79 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases consisting of first-order theories. Computational Intelligence 8, 45–71 (1992)CrossRefGoogle Scholar
  11. 11.
    Chacón, J.L., Pérez, R.P.: Merging operators: Beyond the finite case. Information Fusion 7(1), 41–60 (2006)Google Scholar
  12. 12.
    Booth, R.: Social contraction and belief negotiation. In: KR 2002. Proceedings of the Eighth International Conference on Principles of Knowledge Representation and Reasoning, pp. 375–384. Morgan Kaufmann, San Francisco (2002)Google Scholar
  13. 13.
    Konieczny, S.: On the difference between merging knowledge bases and combining them. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) KR 2000. International Conference on Principles of Knowledge Representation and Reasoning, pp. 135–144. Morgan Kaufmann, San Francisco (2000)Google Scholar
  14. 14.
    Bloch, I., Lang, J.: Towards Mathematical Morpho-Logics. In: Technologies for Constructing Intelligent Systems, vol. 2, pp. 367–380. Springer, Heidelberg (2002)Google Scholar
  15. 15.
    Lehmann, D., Magidor, M., Schlechta, K.: Distance semantics for belief revision. Journal of Symbolic Logic 66(1), 295–317 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. MIT Press, Cambridge (2000)Google Scholar
  17. 17.
    Gorogiannis, N., Hunter, A.: Implementing semantic merging operators using binary decision diagrams. Technical report, University College London (2007)Google Scholar
  18. 18.
    Dalal, M.: Investigations into a theory of knowledge base revision. In: AAAI 1988. Proceedings of the Seventh National Conference on Artificial Intelligence, vol. 2, pp. 475–479 (1988)Google Scholar
  19. 19.
    Grahne, G., Mendelzon, A.O., Revesz, P.Z.: Knowledgebase transformations. Journal of Computer and System Sciences 54(1), 98–112 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 29, 147–160 (1950)MathSciNetGoogle Scholar
  21. 21.
    Lafage, C., Lang, J.: Propositional distances and compact preference representation. European Journal of Operational Research 160(3), 741–761 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nikos Gorogiannis
    • 1
  • Anthony Hunter
    • 1
  1. 1.Department of Computer ScienceUniversity College LondonUK

Personalised recommendations