Possible Semantics for a Common Framework of Probabilistic Logics

  • Rolf Haenni
  • Jan-Willem Romeijn
  • Gregory Wheeler
  • Jon Williamson
Part of the Advances in Soft Computing book series (AINSC, volume 46)


This paper proposes a common framework for various probabilistic logics. It consists of a set of uncertain premises with probabilities attached to them. This raises the question of the strength of a conclusion, but without imposing a particular semantics, no general solution is possible. The paper discusses several possible semantics by looking at it from the perspective of probabilistic argumentation.


Probability Measure Sample Space Probabilistic Logic Common Framework Truth Assignment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, E.W.: A Primer of Probability Logic. CSLI Publications, Stanford (1998)MATHGoogle Scholar
  2. 2.
    Anderson, K.A., Hooker, J.N.: A linear programming framework for logics of uncertainty. Decision Support Systems 16(1), 39–53 (1996)CrossRefGoogle Scholar
  3. 3.
    Bergmann, G.: The logic of probability. American Journal of Physics 9, 263–272 (1941)CrossRefGoogle Scholar
  4. 4.
    Carnap, R.: Logical Foundations of Probability. University of Chicago Press (1950)Google Scholar
  5. 5.
    Cozman, F.G.: Credal networks. Artificial Intelligence 120(2), 199–233 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    de Finetti, B.: The logic of probability. Philosophical Studies 77(1), 181–190 (1995)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Information and Computation 87(1/2), 78–128 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fox, J.: Probability, logic and the cognitive foundations of rational belief. Journal of Applied Logic 1(3–4), 197–224 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gaifman, H.: Concerning measures in first order calculi. Israel Journal of Mathematics 2, 1–18 (1964)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gerla, G.: Inferences in probability logic. Artificial Intelligence 70(1–2), 33–52 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Haenni, R.: Towards a unifying theory of logical and probabilistic reasoning. In: Cozman, F.B., Nau, R., Seidenfeld, T. (eds.) ISIPTA 2005, 4th International Symposium on Imprecise Probabilities and Their Applications, Pittsburgh, USA, pp. 193–202 (2005)Google Scholar
  12. 12.
    Haenni, R.: Using probabilistic argumentation for key validation in public-key cryptography. International Journal of Approximate Reasoning 38(3), 355–376 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Haenni, R.: Probabilistic argumentation. Journal of Applied Logic (forthcoming, 2008)Google Scholar
  14. 14.
    Haenni, R., Hartmann, S.: Modeling partially reliable information sources: A general approach based on Dempster-Shafer theory. International Journal of Information Fusion 7(4), 361–379 (2006)CrossRefGoogle Scholar
  15. 15.
    Haenni, R., Kohlas, J., Lehmann, N.: Probabilistic argumentation systems. In: Gabbay, D.M., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems. Algorithms for Uncertainty and Defeasible Reasoning, vol. 5, pp. 221–288. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  16. 16.
    Hailperin, T.: Probability logic. Notre Dame Journal of Formal Logic 25(3), 198–212 (1984)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hailperin, T.: Sentential Probability Logic. Lehigh University Press (1996)Google Scholar
  18. 18.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46, 311–350 (1990)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Howson, C.: Probability and logic. Journal of Applied Logic 1(3–4), 151–165 (2003)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Jaynes, E.T.: Probability theory as logic. In: Fougère, P.F. (ed.) 9th Annual Workshop on Maximum Entropy and Bayesian Methods, pp. 1–16 (1990)Google Scholar
  21. 21.
    Kohlas, J.: Probabilistic argumentation systems: A new way to combine logic with probability. Journal of Applied Logic 1(3–4), 225–253 (2003)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kyburg, H.E.: Probability and Inductive Logic. Macmillan, New York (1970)Google Scholar
  23. 23.
    Levi, I.: The Enterprise of Knowledge. The MIT Press, Cambridge (1980)Google Scholar
  24. 24.
    Ng, R., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computation 101(2), 150–201 (1992)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Nilsson, N.J.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Reichenbach, H.: Wahrscheinlichkeitslogik. Erkenntnis 5, 37–43 (1935)MATHGoogle Scholar
  27. 27.
    Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1–2), 107–136 (2006)CrossRefGoogle Scholar
  28. 28.
    Ruspini, E.H.: The logical foundations of evidential reasoning. Tech. Rep. 408, SRI International, AI Center, Menlo Park, USA (1986)Google Scholar
  29. 29.
    Ruspini, E.H., Lowrance, J., Strat, T.: Understanding evidential reasoning. International Journal of Approximate Reasoning 6(3), 401–424 (1992)MATHCrossRefGoogle Scholar
  30. 30.
    Scott, D., Krauss, P.: Assigning probabilities to logical formulas. In: Hintikka, J., Suppes, P. (eds.) Aspects of Inductive Logic, pp. 219–264. North-Holland, Amsterdam (1966)Google Scholar
  31. 31.
    Williamson, J.: Probability logic. In: Gabbay, D., et al. (eds.) Handbook of the Logic of Argument and Inference: The Turn Toward the Practical, pp. 397–424. Elsevier, Amsterdam (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rolf Haenni
    • 1
  • Jan-Willem Romeijn
    • 2
  • Gregory Wheeler
    • 3
  • Jon Williamson
    • 4
  1. 1.Engineering and Information TechnologyBern University of Applied SciencesSwitzerland
  2. 2.Faculty of PhilosophyUniversity of GroningenGL GroningenThe Netherlands
  3. 3.Department of Computer ScienceUniversidade Nova de LisboaCaparicaPortugal
  4. 4.SECL, PhilosophyUniversity of KentCanterburyUnited Kingdom

Personalised recommendations