Topologies of Approximation Spaces of Rough Set Theory

  • Milan Vlach
Part of the Advances in Soft Computing book series (AINSC, volume 46)


The main aim of this brief note is to explain relations between the classic approach to set approximations and recent proposals appearing in the literature on rough sets. In particular, relations between the standard topological concepts and basic concepts of rough set theory are considered.


Equivalence Class Equivalence Relation Binary Relation Approximation Space Tolerance Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexandroff, P.: Discrete Räume. Mat. Sb. 2, 501–518 (1937)zbMATHGoogle Scholar
  2. 2.
    Gniłka, S.: On extended topologies. I: Closure operators. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 34, 81–94 (1994)Google Scholar
  3. 3.
    Halmos, P.R.: Naive Set Theory. Springer, New York (1987)Google Scholar
  4. 4.
    Hammer, P.C.: Extended topology and systems. Math. Systems Theory 1, 135–142 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Järvinen, J.: Approximations and rough sets based on tolerances. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 182–189. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Järvinen, J., Kortelainen, J.: A note on definability in rough set theory. In: De Baets, B., et al. (eds.) Current Issues in Data and Knowledge Engineering, Problemy Współczesnej Nauki, Teoria i Zastosowania, Informatyka, Warsaw, Poland, pp. 272–277 (2004)Google Scholar
  7. 7.
    Kelley, J.L.: General Topology. D. Van Nostrand Company, London (1967)Google Scholar
  8. 8.
    Lin, T.Y.: Neighborhood Systems: A qualitative theory for fuzzy and rough sets. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft Computing, vol. IV, pp. 132–155 (1997)Google Scholar
  9. 9.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  10. 10.
    Stopher Jr., E.C.: Point set operators and their interrelations. Bull. Amer. Math. Soc. 45, 758–762 (1939)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Vlach, M.: Approximation Operators in Optimization Theory. Zeitschrift für Operations Research 25, 15–23 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Vlach, M.: On nonenlarging closures in affine spaces. In: Novak, J. (ed.) General Topology and its Relations to Modern Analysis and Algebra V, pp. 653–656. Helderman-Verlag, Berlin (1982)Google Scholar
  13. 13.
    Vlach, M.: Closures and neighbourhoods induced by tangential approximations. In: Hammer, G., Pallaschke, D. (eds.) Selected Topics in Operations Research and Mathematical Economics, pp. 119–127. Springer, Berlin (1984)Google Scholar
  14. 14.
    Vlach, M.: Rough sets, neighborhoods, and set approximations. In: Noguchi, H., Ishii, H., Inuiguchi, M. (eds.) Proceedings of 7th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty, Japan, pp. 155–157 (2004)Google Scholar
  15. 15.
    Wybraniec-Skardovska, U.: On a generalization of approximation space. Bulletin of The Polish Academy of Sciences: Mathematics 37, 51–62 (1989)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Milan Vlach
    • 1
    • 2
  1. 1.Kyoto College of Graduate Studies for InformaticsSakyo-kuJapan
  2. 2.School of Mathematics and PhysicsCharles UniversityPraha 1Czech Republic

Personalised recommendations