Performance Prediction of Web Service Workflows

  • Moreno Marzolla
  • Raffaela Mirandola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4880)


Web Services play an important role in the SOA paradigm, as they allow services to be selected on-the-fly to build applications out of existing components. In this scenario, the BPEL notation can be used as an orchestration language which allows the user to describe interactions with Web Services in a standard way. The performance of a BPEL workflow is a very important factor for deciding which components must be selected, or to choose whether a given sequence of interactions can provide the requested quality of service. Due to its very dynamic nature, workflow performance evaluation can not be accomplished using traditional, heavy-weight techniques. In this paper we present a multi-view approach for the performance prediction of service-based applications encompassing both users and service provider(s) perspectives. As a first step towards the realization of this integrated framework we present an efficient approach for performance assessment of Web Service workflows described using the BPEL notation. Starting from annotated BPEL and WSDL specifications, we derive performance bounds on response time and throughput. In such a way users are able to assess the efficiency of a BPEL workflow, while service provider(s) can perform sizing studies or estimate performance gains of alternative upgrades to existing systems. To bring this approach to fruition we developed a prototype tool called bpel2qnbound, using which we analyze a simple case study.


Service Selection Service Demand Average Service Time Visit Count Queueing Network Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Menasce, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6), 72–75 (2002)CrossRefGoogle Scholar
  2. 2.
    D’Ambrogio, A.: A model-driven WSDL extension for describing the qos of web services. In: 2006 IEEE International Conference on Web Services (ICWS 2006), Chicago, Illinois, pp. 789–796. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  3. 3.
    Denning, P.J., Buzen, J.P.: The operational analysis of queueing network models. ACM Comput. Surv. 10(3), 225–261 (1978)CrossRefzbMATHGoogle Scholar
  4. 4.
    Balbo, G., Serazzi, G.: Asymptotic analysis of multiclass closed queueing networks: Multiple bottlenecks. Performance Evaluation 30, 115–152 (1997)CrossRefGoogle Scholar
  5. 5.
    Maximilien, E.M., Singh, M.P.: A Framework and Ontology for Dynamic Web Services Selection. IEEE Internet Computing 8(5), 84–93 (2004)CrossRefGoogle Scholar
  6. 6.
    Patel, C., Supekar, K., Lee, Y.: A QoS Oriented Framework for Adaptive Management of Web Service Based Workflows. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 826–835. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Yu, T., Lin, K.J.: A Broker-Based Framework for QoS-Aware Web Service Composition. In: Proc. of 2005 IEEE Int’l Conf. on e-Technology, e-Commerce and e-Service, Hong Kong, China (March 2005)Google Scholar
  8. 8.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Middleware for Web Services Composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)CrossRefGoogle Scholar
  9. 9.
    Ardagna, D., Pernici, B.: Global and Local QoS Guarantee in Web Service Selection. In: Proc. of Business Process Management Workshops, pp. 32–46 (2005)Google Scholar
  10. 10.
    Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An Approach for QoS-aware Service Composition Based on Genetic Algorithms. In: Proc. of Genetic and Computation Conf., Washington, DC (June 2005)Google Scholar
  11. 11.
    Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for workflows and web service processes. J. Web Sem. 1(3), 281–308 (2004)CrossRefGoogle Scholar
  12. 12.
    Serhani, M.A., Dssouli, R., Hafid, A., Sahraoui, H.: A QoS Broker Based Architecture for Efficient Web Services Selection. In: Proc. of 2005 Int’l Conf. on Web Services, Orlando, pp. 113–120 (July 2005)Google Scholar
  13. 13.
    Yu, T., Lin, K.J.: Service Selection Algorithms for Composing Complex Services with Multiple QoS Constraints. In: Proc. of 3rd Int’l Conf. on Service Oriented Computing, Amsterdam, The Netherlands, pp. 130–143 (December 2005)Google Scholar
  14. 14.
    Claro, D.B., Albers, P., Hao, J.-K.: Selecting Web Services for Optimal Composition. In: Proc. of ICWS 2005 2nd Int’l Workshop on Semantic and Dynamic Web Processes, Orlando (July 2005)Google Scholar
  15. 15.
    Cardoso, J.: Complexity analysis of BPEL web processes. Software Process: Improvement and Practice 12(1), 35–49 (2007)CrossRefGoogle Scholar
  16. 16.
    Rud, D., Schmietendorf, A., Dumke, R.: Performance modeling of ws-bpel-based web service compositions. In: Services computing workshops, SCW 2006, pp. 140–147. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  17. 17.
    Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains. J. Wiley, Chichester (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Cardellini, V., Casalicchio, E., Grassi, V., Mirandola, R.: A framework for optimal service selection in broker-based architectures with multiple QoS classes. In: Services computing workshops, SCW 2006, pp. 105–112. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  19. 19.
    Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System Performance: Computer System Analysis Using Queueig Network Models. Prentice-Hall, Englewood Cliffs (1984)Google Scholar
  20. 20.
    Alves, A., et al.: Web service business process execution language version 2.0 Committee Draft (May 17, 2006)Google Scholar
  21. 21.
    Balsamo, S., Marzolla, M., Mirandola, R.: Efficient performance models in component-based software engineering. In: EUROMICRO 2006: Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications, pp. 64–71. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  22. 22.
    D’Ambrogio, A.: A WSDL extension for performance-enabled description of web services. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 371–381. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Object Management Group (OMG): UML profile for schedulability, performance and time specification. Final Adopted Specification ptc/02-03-02, OMG (March 2002)Google Scholar
  24. 24.
    Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers, San Francisco (2003)Google Scholar
  25. 25.
    OGSA Basic Execution Service Working Group:
  26. 26.
    Antonioletti, M., Krause, A., Paton, N.W., Eisenberg, A., Laws, S., Malaika, S., Melton, J., Pearson, D.: The WS-DAI family of specifications for web service data access and integration. SIGMOD Record 35(1), 48–55 (2006)CrossRefGoogle Scholar
  27. 27.
    Balsamo, S., Marzolla, M.: Performance evaluation of UML software architectures with multiclass queueing network models. In: Proc. of the Fifth International Workshop on Software and Performance (WOSP 2005), pp. 37–42. ACM Press, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Moreno Marzolla
    • 1
  • Raffaela Mirandola
    • 2
  1. 1.INFN Sezione di PadovaPadovaItaly
  2. 2.Dip. di Elettronica e InformazionePolitecnico di MilanoMilanoItaly

Personalised recommendations