Skip to main content

Lotus Effect: Roughness-Induced Superhydrophobic Surfaces

  • Chapter
Nanotribology and Nanomechanics

Abstract

Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water-repellent properties. These surfaces with high contact angle and low contact angle hysteresis also exhibit a self-cleaning effect and low drag for fluid flow. These surfaces are of interest in various applications, including self-cleaning windows, exterior paints for buildings, navigation ships, textiles, and applications requiring a reduction in fluid flow, e.g., in micro/nanochannels. Superhydrophobic surfaces prevent formation of menisci at a contacting interfaces and can be used to minimize high adhesion and stiction. Certain plant leaves, notably lotus leaves, are known to be superhydrophobic due to their roughness and the presence of a thin wax film on the leaf surface, and the phenomenon is known as the “Lotus effect.” Extremely water-repellent superhydrophobic surfaces can be produced by using roughness combined with hydrophobic coatings. In this chapter, the theory of roughness-induced superhydrophobicity is presented followed by the characterization data of natural leaf surfaces and artificial superhydrophobic surfaces. Wetting is studied as a multiscale process involving the macroscale (water droplet size), microscale (surface texture size), and nanoscale (molecular size). This includes fundamental physical mechanisms of wetting, responsible for the transition between various wetting regimes, contact angle and contact angle hysteresis. Practical aspects of design of superhydrophobic surfaces are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelsalam ME, Bartlett PN, Kelf T and Baumberg J, Wetting of regularly structured gold surfaces, Langmuir, 21 (2005) 1753–1757

    Article  CAS  Google Scholar 

  2. Adamson AV, 1990, Physical Chemistry of Surfaces, Wiley, NY

    Google Scholar 

  3. Anisimov MA, Divergence of Tolman’s Length for a Droplet Near the Critical Point, Phys. Rev. Lett., 98 (2007) 035702

    Article  CAS  Google Scholar 

  4. Bahadur V and Garimella SV, Electrowetting-Based Control of Static Droplet States on Rough Surfaces, Langmuir, 23 (2007) 4918–4924

    Article  CAS  Google Scholar 

  5. Baker EA (1982) Chemistry and Morphology of Plant Epicuticular Waxes in The Plant Cuticle (Eds. Cutler DF, Alvin KL and Price CE, Academic Press, 1982), 139–165

    Google Scholar 

  6. Barbieri L, Wagner E and Hoffmann P, Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstavles, Langmuir, 23 (2007) 1723–1734

    Article  CAS  Google Scholar 

  7. Bartell FE and Shepard JW, Surface Roughness as Related to Hysteresis of Contact Angles J. Phys. Chem., 57 (1953) 455–458

    Article  CAS  Google Scholar 

  8. Barthlott W and Neinhuis C, Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces, Planta, 202 (1997) 1–8

    Article  CAS  Google Scholar 

  9. Bartolo D, Bouamrirene F, Verneuil E, Buguin A, Silberzan P and Moulinet S, Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces, Europhys. Lett., 74 (2006) 299–305

    Article  CAS  Google Scholar 

  10. Bhushan B, Adhesion and Stiction: Mechanisms, Measurement Techniques and Methods for Reduction, J. Vac. Sci. Technol. B 21 (2003) 2262–2296

    Article  CAS  Google Scholar 

  11. Bhushan B, 1996, Tribology and Mechanics of Magnetic Storage Systems, 2nd ed., Springer-Verlag, New York

    Google Scholar 

  12. Bhushan B, 1998, Tribology Issues and Opportunities in MEMS, Kluwer Academic Publishers, Dordrecht, Netherlands

    Google Scholar 

  13. Bhushan B, 1999, Principles and Applications of Tribology, Wiley, NY

    Google Scholar 

  14. Bhushan B, 2002, Introduction to Tribology, Wiley, NY

    Google Scholar 

  15. Bhushan B, 2005, Nanotribology and Nanomechanics–An Introduction, Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  16. Bhushan B, 2007, Springer Handbook of Nanotechnology, 2nd ed., Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  17. Bhushan B and Jung YC, Micro and Nanoscale Characterization of Hydrophobic and Hydrophilic Leaf Surface, Nanotechnology, 17 (2006) 2758–2772

    Article  CAS  Google Scholar 

  18. Bhushan B and Jung YC, Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy, 107 (2007) 1033–1041

    Article  CAS  Google Scholar 

  19. Bhushan B and Jung YC, Wetting, Adhesion and Friction of Superhydrophobic and Hydrophilic Leaves and Fabricated Micro/nanopatterned Surfaces, J. Phys.: Condens. Matter (2008, in press)

    Google Scholar 

  20. Bhushan B, Israelachvili JN and Landman U, Nanotribology: Friction, Wear and Lubrication at the Atomic Scale, Nature, 374 (1995) 607–616

    Article  CAS  Google Scholar 

  21. Bhushan B, Hansford D and Lee KK, Surface Modification of Silicon and Polydimethylsiloxane Surfaces with Vapor-Phase-Deposited Ultrathin Fluorosilane Films for Biomedical Nanodevices, J. Vac. Sci. Technol. A, 24 (2006) 1197–1202

    Article  CAS  Google Scholar 

  22. Bhushan B, Nosonovsky M and Jung YC, Towards Optimization of Patterned Superhydrophobic Surfaces J. Royal Soc. Interface, 4 (2007) 643–648

    Article  CAS  Google Scholar 

  23. Bico J, Marzolin C and Quėrė D, Pearl drops, Europhys. Lett., 47 (1999) 220–226

    Article  CAS  Google Scholar 

  24. Bico J, Thiele U and Quėrė D, Wetting of Textured Surfaces, Colloids and Surfaces A, 206 (2002) 41–46

    Article  CAS  Google Scholar 

  25. Bormashenko E, Stein T, Whyman G, Bormashenko Y and Pogreb E, Wetting Properties of the Multiscaled Nanostructured Polymer and Metallic Superhydrophobic Surfaces, Langmuir, 22 (2006) 9982–9985

    Article  CAS  Google Scholar 

  26. Bormashenko E, Bormashenko Y, Stein T, Whyman G, Pogreb R and Barkay Z, Environmental Scanning Electron Microscope Study of the Fine Structure of the Triple Line and Cassie-Wenzel Wetting Transition for Sessile Drops Deposited on Rough Polymer Substrates, Langmuir, 23 (2007) 4378–4382

    Article  CAS  Google Scholar 

  27. Bormashenko E, Pogreb R, Whyman G and Erlich M, Cassie-Wenzel Wetting Transition in Vibrated Drops Deposited on the Rough Surfaces: Is Dynamic Cassie-Wenzel Transition 2D or 1D Affair? Langmuir, 23 (2007) 6501–6503

    Article  CAS  Google Scholar 

  28. Boruvka L and Neumann AW, Generalization of the Classical Theory of Capillarity, J. Chem. Phys., 66 (1977) 5464–5476

    Article  CAS  Google Scholar 

  29. Bourges-Monnier C and Shanahan MER, Influence of Evaporation on Contact Angle, Langmuir, 11 (1995) 2820–2829

    Article  CAS  Google Scholar 

  30. Brugnara M, Della Volpe C, Siboni S and Zeni D, Contact Angle Analysis on Polymethylmethacrylate and Commercial Wax by Using an Environmental Scanning Electron Microscope, Scanning, 28 (2006) 267–273

    CAS  Google Scholar 

  31. Burton Z and Bhushan B, Hydrophobicity, Adhesion, and Friction Properties of Nanopatterned Polymers and Scale Dependence for Micro- and Nanoelectromechanical Systems, Nano Lett., 5 (2005) 1607–1613

    Article  CAS  Google Scholar 

  32. Burton Z and Bhushan B, Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces, Ultramicroscopy, 106 (2006) 709–719

    Article  CAS  Google Scholar 

  33. Callies M and Quėrė D, On water repellency, Soft Matter, 1 (2005) 55–61

    Article  CAS  Google Scholar 

  34. Cassie A and Baxter S, Wettability of Porous Surfaces, Trans. Faraday Soc., 40 (1944) 546–551

    Article  CAS  Google Scholar 

  35. Checco A, Guenoun P and Daillant J, Nonlinear Dependence of the Contact Angle of Nanodroplets on Contact Line Curvatures, Phys. Rev. Lett., 91 (2003)186101

    Article  CAS  Google Scholar 

  36. Choi SE, Yoo PJ, Baek SJ, Kim TW, and Lee HH, An ultraviolet-curable mold for sub-100-nm lithography, J. Am. Chem. Soc., 126 (2004) 7744–7745

    Article  CAS  Google Scholar 

  37. Chong MAS, Zheng YB, Gao H, and Tan LK, Combinational template-assisted fabrication of hierarchically ordered nanowire arrays on substrates for device applications, Appl. Phys. Lett., 89 (2006) 233104

    Article  CAS  Google Scholar 

  38. Coulson SR, Woodward I, Badyal JPS, Brewer SA, and Willis C, Super-Repellent Composite Fluoropolymer Surfaces, J. Phys. Chem. B, 104 (2000) 8836–8840

    Article  CAS  Google Scholar 

  39. Danilatos GD and Brancik JV, Observation of liquid transport in the ESEM, Proc. 44th Annual Meeting EMSA: (1986) 678–679

    Google Scholar 

  40. del Campo A, Greiner C, SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography, J. Micromech. Microeng., 17 (2007) R81–R95

    Article  CAS  Google Scholar 

  41. de Gennes PG, Brochard-Wyart F, and Quėrė D Capillarity and Wetting Phenomena (Springer, Berlin, 2003)

    Google Scholar 

  42. Derjaguin BV and Churaev NV, Structural Component of Disjoining Pressure, J. Colloid Interface Sci., 49 (1974) 249–255

    Article  Google Scholar 

  43. Erbil HY, McHale G, and Newton MI, Drop Evaporation on Solid Surfaces: Constant Contact Angle Mode, Langmuir, 18 (2002) 2636–2641

    Article  CAS  Google Scholar 

  44. Erbil HY, Demirel AL, and Avci Y, Transformation of a Simple Plastic into a Superhydrophobic Surface, Science, 299 (2003) 1377–1380

    Article  CAS  Google Scholar 

  45. Eustathopoulos N, Nicholas MG, Drevet B, 1999, Wettability at High Temparatures, Pergamon, Amsterdam

    Google Scholar 

  46. Extrand CW, Model for Contact Angle and Hysteresis on Rough and Ultraphobic Surfaces, Langmuir, 18 (2002) 7991–7999

    Article  CAS  Google Scholar 

  47. Extrand CW, Contact Angle Hysteresis on Surfaces with Chemically Heterogeneous Islands, Langmuir, 19 (2003) 3793–3796

    Article  CAS  Google Scholar 

  48. Extrand CW, Criteria for Ultralyophobic Surfaces, Langmuir, 20 (2004) 5013–5018

    Article  CAS  Google Scholar 

  49. Feng XJ, Feng L, Jin MH, Zhai J, Jiang L, Zhu DB, Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films, J. Am. Chem. Soc., 126 (2004) 62–63

    Article  CAS  Google Scholar 

  50. Furstner R, Barthlott W, Neinhuis C, and Walzel P, Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces, Langmuir, 21 (2005) 956–961

    Article  CAS  Google Scholar 

  51. Gao XF and Jiang L, Biophysics: Water-repellent Legs of Water Striders, Nature, 432 (2004) 36

    Article  CAS  Google Scholar 

  52. Gao L and McCarthy TJ, The Lotus Effect Explained: Two Reasons Why Two Length Scales of Topography are Important, Langmuir, 22 (2006) 2966–2967

    Article  CAS  Google Scholar 

  53. Gao L and McCarthy TJ, How Wenzel and Cassie Were Wrong, Langmuir, 23 (2007) 3762–3765

    Article  CAS  Google Scholar 

  54. Gupta P, Ulman A, Fanfan F, Korniakov A., and Loos K., “Mixed Self-Assembled Monolayer of Alkanethiolates on Ultrasmooth Gold do not Exhibit Contact Angle Hysteresis,” J. Am. Chem. Soc., 127 (2005) 4-5

    Article  CAS  Google Scholar 

  55. Han JT, Jang Y, Lee DY, Park JH, Song SH, Ban DY, and Cho  K, Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development, J. Mater. Chem., 15 (2005) 3089–3092

    Article  CAS  Google Scholar 

  56. He B, Patankar NA, and Lee J, Multiple Equilibrium Droplet Shapes and Design Criterion for Rough Hydrophobic Surfaces, Langmuir 19 (2003) 4999–5003

    Article  CAS  Google Scholar 

  57. Herminghaus S, Roughness-Induced Non-Wetting, Europhys. Lett., 52 (2000) 165–170

    Article  Google Scholar 

  58. Hikita M, Tanaka K, Nakamura T, Kajiyama T, and Takahara A, Superliquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups, Langmuir, 21 (2005) 7299–7302

    Article  CAS  Google Scholar 

  59. Hosono E, Fujihara S, Honma I, and Zhou H, Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process, J. Am. Chem. Soc., 127 (2005) 13458–13459

    Article  CAS  Google Scholar 

  60. Huang L, Lau SP, Yang HY, Leong ESP, and Yu SF, Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film, J. Phys. Chem., 109 (2005) 7746–7748

    CAS  Google Scholar 

  61. Israelachvili JN, 1992, Intermolecular and Surface Forces, 2nd edition, Academic Press, London

    Google Scholar 

  62. Israelachvili JN and Gee ML, Contact angles on Chemically Heterogeneous Surfaces, Langmuir, 5 (1989) 288–289

    Article  CAS  Google Scholar 

  63. Ishino C and Okumura K, Nucleation scenarios for wetting transition on textured surfaces: The effect of contact angle hysteresis, Europhys. Lett., 76 (2006), 464–470

    Article  CAS  Google Scholar 

  64. Jansen H, de Boer M, Legtenberg R, and Elwenspoek M, The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, J. Micromech. Microeng. 5 (1995) 115–120

    Article  CAS  Google Scholar 

  65. Jetter R, Kunst L, and Samuels AL, Composition of plant cuticular waxes. In Biology of the Plant Cuticle (eds. M. Riederer and C. Müller), Oxford, Blackwell Publishing (2006), 145–181

    Chapter  Google Scholar 

  66. Johnson RE and Dettre RH, 1964, Contact Angle Hysteresis, Contact Angle, Wettability, and Adhesion, Adv. Chem. Ser., Vol. 43, Ed. By F. M. Fowkes American Chemical Society, Washington, D. C., 112–135

    Google Scholar 

  67. Jung YC and Bhushan B, Contact Angle, Adhesion, and Friction Properties of Micro- and Nanopatterned Polymers for Superhydrophobicity, Nanotechnology, 17 (2006) 4970–4980

    Article  CAS  Google Scholar 

  68. Jung YC and Bhushan B, Wetting transition of water droplets on superhydrophobic patterned surfaces, Scripta Mater., 57 (2007) 1057–1060

    Article  CAS  Google Scholar 

  69. Jung YC and Bhushan B, Wetting Behavior During Evaporation and Condensation of Water Microdroplets on Superhydrophobic Patterned Surfaces J. Micros., 229 (2008) 127–140

    Article  CAS  Google Scholar 

  70. Kamusewitz H, Possart W, and Paul D, The Relation Between Young’s Equilibrium Contact Angle and the Hysteresis on Rough Paraffin Wax Surfaces, Colloids and Surfaces A: Physicochem. Eng. Aspects, 156 (1999) 271–279

    Article  CAS  Google Scholar 

  71. Kasai T, Bhushan B, Kulik G, Barbieri L, and Hoffmann P, Micro/nanotribological study of perfluorosilane SAMs for antistiction and low wear, J. Vac. Sci. Technol. B, 23 (2005) 995–1003

    Article  CAS  Google Scholar 

  72. Khorasani MT, Mirzadeh H, and Kermani Z, Wettability of porous polydimethylsiloxane surface: morphology study, Appl. Surf. Sci., 242 (2005) 339–345

    Article  CAS  Google Scholar 

  73. Kijlstra J, Reihs K, and Klami A, Roughness and Topology of Ultra-Hydrophobic surfaces, Colloids and Surfaces A: Physicochem. Eng. Aspects, 206 (2002) 521–529

    Article  CAS  Google Scholar 

  74. Kim D, Hwang W, Park HC, and Lee KH, Superhydrophobic Micro- and Nanostructures Based on Polymer Sticking, Key Eng. Mat., 334-335 (2007) 897–900

    Article  CAS  Google Scholar 

  75. Klein RJ, Biesheuvel PM, Yu BC, Meinhart CD, and Lange FF, Producing super-hydrophobic surfaces with nano-silica spheres, Z. Metallkd., 94 (2003) 377–380

    CAS  Google Scholar 

  76. Koch K, Dommisse A, and Barthlott W, Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates, Crystl. Growth Des. 6 (2006) 2571–2578

    Article  CAS  Google Scholar 

  77. Koinkar VN and Bhushan B, Effect of scan size and surface roughness on microscale friction measurements, J. Appl. Phys., 81 (1997) 2472–2479

    Article  CAS  Google Scholar 

  78. Krupenkin TN, Taylor JA, Schneider TM, and Yang S, From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces, Langmuir, 20 (2004) 3824–3827

    Article  CAS  Google Scholar 

  79. Lafuma A and Quėrė D, Superhydrophobic states, Nature Materials, 2 (2003) 457–460

    Article  CAS  Google Scholar 

  80. Lahann J, Mitragotri S, Tran T, Kaido H, Sundaram J, Choi IS, Hoffer S, Somorjai GA, and Langer R, A reversibly Switching Surface, Science, 299 (2003) 371–374

    Article  CAS  Google Scholar 

  81. Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, and Gleason KK, Superhydrophobic Carbon Nanotube Forests, Nano Lett., 3 (2003) 1701–1705

    Article  CAS  Google Scholar 

  82. Lee W, Jin M, Yoo W, and Lee J, Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability, Langmuir, 20 (2004) 7665–7669

    Article  CAS  Google Scholar 

  83. Li W and Amirfazli A, A Thermodynamic Approach for Determining the Contact Angle Hysteresis for Superhydrophobic Surfaces, J. Colloid. Interface Sci., 292 (2006) 195–201

    Article  CAS  Google Scholar 

  84. Ma M and Hill RM, Superhydrophobic Surfaces, Current Opinion in Colloid and Interface Science, 11 (2006) 193–202

    Article  CAS  Google Scholar 

  85. Ma M, Hill RM, Lowery JL, Fridrikh SV, and Rutledge GC, Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity, Langmuir, 21 (2005) 5549–5554

    Article  CAS  Google Scholar 

  86. Marmur A, Wetting on Hydrophobic Rough Surfaces: to be Heterogeneous or Not to be? Langmuir, 19 (2003) 8343–8348

    Article  CAS  Google Scholar 

  87. Marmur A, The Lotus Effect: Superhydrophobicity and Metastability, Langmuir, 20 (2004) 3517–3519

    Article  CAS  Google Scholar 

  88. Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson CDW, and Riehle MO, Superhydrophobicity and superhydrophilicity of regular nanopatterns, Nano Lett., 5 (2005) 2097–2103

    Article  CAS  Google Scholar 

  89. McHale G, Aqil S, Shirtcliffe NJ, Newton MI, and Erbil HY, Analysis of droplet evaporation on a superhydrophobic surface, Langmuir, 21 (2005) 11053–11060

    Article  CAS  Google Scholar 

  90. Ming W, Wu D, van Benthem R, and de With G, Superhydrophobic films from raspberry-like particles, Nano Lett., 5 (2005) 2298–2301

    Article  CAS  Google Scholar 

  91. Nakajima A, Fujishima A, Hashimoto K, and Watanabe T, Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate, Adv. Mater., 11 (1999) 1365–1368

    Article  CAS  Google Scholar 

  92. Neinhuis C, and Barthlott W, Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces, Annals of Botany, 79 (1997) 667–677

    Article  Google Scholar 

  93. Northen MT and Turner KL, A batch fabricated biomimetic dry adhesive, Nanotechnology, 16 (2005) 1159–1166

    Article  CAS  Google Scholar 

  94. Nosonovsky M, Multiscale roughness and stability of superhydrophobic biomimetic interfaces, Langmuir, 23 (2007) 3157–3161

    Article  CAS  Google Scholar 

  95. Nosonovsky M, Model for Solid-Liquid and Solid-Solid Friction for Rough Surfaces with Adhesion Hysteresis, J. Chem. Phys., 126 (2007) 224701

    Article  CAS  Google Scholar 

  96. Nosonovsky M, On the Range of Applicability of the Wenzel and Cassie Equations Langmuir, 23 (2007) 9919–9920

    Article  Google Scholar 

  97. Nosonovsky M and Bhushan B, Roughness optimization for biomimetic superhydrophobic surfaces, Microsyst. Technol., 11 (2005) 535–549

    Article  CAS  Google Scholar 

  98. Nosonovsky M and Bhushan B, Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces, Microsyst. Technol., 12 (2006) 231–237

    Article  CAS  Google Scholar 

  99. Nosonovsky M and Bhushan B, Wetting of Rough Three-Dimensional Superhydrophobic Surfaces, Microsyst. Technol., 12 (2006) 273–281

    Article  CAS  Google Scholar 

  100. Nosonovsky M and Bhushan B, Hierarchical Roughness Makes Superhydrophobic Surfaces Stable, Microelectronic Eng., 84 (2007) 382–386

    Article  CAS  Google Scholar 

  101. Nosonovsky M and Bhushan B, Hierarchical roughness optimization for Biomimetic superhydrophobic surfaces, Ultramicroscopy, 107 (2007) 969–979

    Article  CAS  Google Scholar 

  102. Nosonovsky M and Bhushan B, Biomimetic Superhydrophobic Surfaces: Multiscale Approach, Nano Lett., 7 (2007) 2633–2637

    Article  CAS  Google Scholar 

  103. Nosonovsky M and Bhushan B, Multiscale Friction Mechanisms and Hierarchical Surfaces in Nano- and Bio-Tribology, Mater. Sci. Eng.:R, 58 (2007) 162–193

    Article  CAS  Google Scholar 

  104. Nosonovsky M and Bhushan B, Roughness-induced superhydrophobicity: a way to design non-adhesive surfaces, J. Phys.: Condens. Matter, (2008, in press)

    Google Scholar 

  105. Nosonovsky M and Bhushan B, Capillary effects and instabilities in nanocontacts, Ultramicroscopy, (2008, in press)

    Google Scholar 

  106. Nosonovsky M and Bhushan B, Patterned Non-Adhesive Surfaces: Superhydrophobicity and Wetting Regime Transitions, Langmuir 24 (2008) 1525–1533

    Article  CAS  Google Scholar 

  107. Oner D and McCarthy TJ, Ultrahydrophobic surfaces. Effects of topography length scales on wettability, Langmuir 16 (2000) 7777–7778

    Article  CAS  Google Scholar 

  108. Patankar NA, On the Modeling of Hydrophobic Contact Angles on Rough Surfaces, Langmuir, 19 (2003) 1249–1253

    Article  CAS  Google Scholar 

  109. Patankar NA, Transition Between Superhydrophobic States on Rough Surfaces Langmuir, 20 (2004) 7097–7102

    Article  CAS  Google Scholar 

  110. Patankar NA, Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars, Langmuir, 20 (2004) 8209–8213

    Article  CAS  Google Scholar 

  111. Pompe T, Fery A, and Herminghaus S, Measurement of Contact Line Tension by Analysis of the Three-Phase Boundary with Nanometer Resolution, in Apparent and Microscopic Contact Angles (Drelich J, Laskowski JS, and Mittal KL, eds., VSP, Utrecht, 2000) 3–12

    Google Scholar 

  112. Poon CY and Bhushan B, Comparison of surface Roughness measurements by stylus profiler, AFM and non-contact optical profiler, Wear, 190 (1995) 76–88

    Article  CAS  Google Scholar 

  113. Qian B and Shen Z, Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates, Langmuir, 21 (2005) 9007–9009

    Article  CAS  Google Scholar 

  114. Quėrė D, Non-Sticking Drops, Rep. Prog. Phys., 68 (2005) 2495–2535

    Article  Google Scholar 

  115. Reyssat M, Pepin A, Marty F, Chen Y, and Quėrė D, Bouncing transitions on microtextured materials, Europhys. Lett., 74 (2006) 306–312

    Article  CAS  Google Scholar 

  116. Rowan SM, Newton MI, and McHale G, Evaporation of Microdroplets and the Wetting of Solid Surfaces, J. Phys. Chem., 99 (1995) 13268–13271

    Article  CAS  Google Scholar 

  117. Semal S, Blake TD, Geskin V, de Ruijter ML, Castelein G, and De Coninck J, Influence of Surface Roughness on Wetting Dynamics, Langmuir, 15 (1999) 8765–8770

    Article  CAS  Google Scholar 

  118. Shang HM, Wang Y, Limmer SJ, Chou TP, Takahashi K, and Cao  GZ, Optically transparent superhydrophobic silica-based films, Thin Solid Films, 472 (2005) 37–43

    Article  CAS  Google Scholar 

  119. Shi F, Song Y, Niu J, Xia X, Wang Z, and Zhang X, Facile Method To Fabricate a Large-Scale Superhydrophobic Surface by Galvanic Cell Reaction, Chem. Mater., 18 (2006) 1365–1368

    Article  CAS  Google Scholar 

  120. Shibuichi S, Onda T, Satoh N, and Tsujii K, Super-Water-Repellent Surfaces Resulting from Fractal Structure, J.Phys. Chem., 100 (1996) 19512–19517

    Article  CAS  Google Scholar 

  121. Shirtcliffe NJ, McHale G, Newton MI, Chabrol G, Perry CC, Dual-scale roughness produces unusually water-repellent surfaces, Adv. Mater., 16 (2004) 1929–1932

    Article  CAS  Google Scholar 

  122. Shirtcliffe NJ, McHale G, Newton MI, Perry CC, and Roach P, Porous materials show superhydrophobic to superhydrophilic switching, Chem. Commun., (2005) 3135–3137

    Google Scholar 

  123. Shiu J, Kuo C, Chen P, and Mou C, Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography, Chem. Mater., 16 (2004) 561–564

    Article  CAS  Google Scholar 

  124. Shuttleworth R and Bailey GLJ, The Spreading of a Liquid Over a Rough Solid, Discussions of the Faraday Society, 3 (1948) 16–22

    Article  Google Scholar 

  125. Stelmashenko NA, Craven JP, Donald AM, Terentjev EM, and Thiel  BL, Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy, J. Micros., 204 (2001) 172–183

    Article  CAS  Google Scholar 

  126. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L, and Zhu D, Reversible Switching between Superhydrophilicity and Superhydrophobicity, Angew, Chem., 116 (2004) 361–364

    Article  Google Scholar 

  127. Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, and Chen Y, Artificial Lotus Leaf by Nanocasting, Langmuir, 21 (2005) 8978–8981

    Article  CAS  Google Scholar 

  128. Tambe NS and Bhushan B, Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants, Nanotechnology, 15 (2004) 1561–1570

    Google Scholar 

  129. Teshima K, Sugimura H, Inoue Y, Takai O, and Takano A, Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating, Appl. Surf. Sci., 244 (2005) 619–622

    Article  CAS  Google Scholar 

  130. Tretinnikov ON, Wettability and Microstructure of Polymer Surfaces: Stereochemical and Conformational Aspects in Apparent and Microscopic Contact Angles (Drelich J, Laskowski  JS, and Mittal KL, eds., VSP, Utrecht, 2000) 111–128

    Google Scholar 

  131. Wagner P, Furstner R, Barthlott W, and Neinhuis C, Quantitative Assessment to the Structural Basis of Water Repellency in Natural and Technical Surfaces, J. Exper. Botany, 54 (2003) 1295–1303

    Article  CAS  Google Scholar 

  132. Wang Y, Zhu Q, and Zhang H, Fabrication and magnetic properties of hierarchical porous hollow nickel microspheres, J. Mater. Chem., 16 (2006) 1212–1214

    Article  CAS  Google Scholar 

  133. Wenzel RN, Resistance of Solid Surfaces to Wetting by Water, Indust. Eng. Chem., 28 (1936) 988–994

    Article  CAS  Google Scholar 

  134. Wu X, Zheng L, and Wu D, Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route, Langmuir, 21 (2005) 2665–2667

    Article  CAS  Google Scholar 

  135. Xu L, Chen W, Mulchandani A, and Yan Y, Reversible Conversion of Conducting Polymer Films from Superhydrophobic to Superhydrophilic, Angew. Chem. Int. Ed., 44 (2005) 6009–6012

    Article  CAS  Google Scholar 

  136. Yabu H and Shimomura M, Single-Step Fabrication of Transparent Superhydrophobic Porous Polymer Films, Chem. Mater., 17 (2005) 5231–5234

    Article  CAS  Google Scholar 

  137. Yoshimitsu Z, Nakajima A, Watanabe T, and Hashimoto K, Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets, Langmuir, 18 (2002) 5818–5822

    Article  CAS  Google Scholar 

  138. Yost FG, Michael JR, and Eisenmann ET, Extensive Wetting Due to Roughness, Acta Metall. Mater., 45 (1995) 299–305

    Google Scholar 

  139. Zhai L, Cebeci FC, Cohen RE, and Rubner MF, Stable superhydrophobic coatings from polyelectrolyte multilayers, Nano Lett., 4 (2004) 1349–1353

    Article  CAS  Google Scholar 

  140. Zhang JL, Li JA, and Han YC, Superhydrophobic PTFE surfaces by extension, Macromol. Rapid Commun., 25 (2004) 1105–1108

    Article  CAS  Google Scholar 

  141. Zhang X, Feng S, Yu X, Liu H, Fu Y, Wang Z, Jiang L, and Li  X, Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface, J. Am. Chem. Soc., 126 (2004) 3064–3065

    Article  CAS  Google Scholar 

  142. Zhang X, Tan S, Zhao N, Guo X, Zhang X, Zhang Y, and Xu J, Evaporation of Sessile Water Droplets on Superhydrophobic Natural Lotus and Biomimetic Polymer Surfaces, ChemPhysChem, 7 (2006) 2067–2070

    Article  CAS  Google Scholar 

  143. Zhao N, Xie QD, Weng LH, Wang SQ, Zhang XY, and Xu J, Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution, Macromolecules, 38 (2005) 8996–8999

    Article  CAS  Google Scholar 

  144. Zhao Y, Tong T, Delzeit L, Kashani A, Meyyappan M, and Majumdar  A, Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive, J. Vac. Sci. Technol. B, 24 (2006) 331–335

    Article  CAS  Google Scholar 

  145. Zhu L, Xiu Y, Xu J, Tamirisa PA, Hess DW, and Wong C, Superhydrophobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Aligned Carbon Nanotube Arrays Coated with Fluorocarbon, Langmuir, 21 (2005) 11208–11212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B., Nosonovsky, M., Jung, Y. (2008). Lotus Effect: Roughness-Induced Superhydrophobic Surfaces. In: Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77608-6_19

Download citation

Publish with us

Policies and ethics